
An Empirical Study on Factors Impacting Bug Fixing Time

Feng Zhang1, Foutse Khomh2, Ying Zou2, and Ahmed E. Hassan1

1School of Computing, Queen’s University, Canada
{feng, ahmed}@cs.queensu.ca

2Department of Electrical and Computer Engineering, Queen’s University, Canada
{foutse.khomh, ying.zou}@queensu.ca

Abstract—Fixing bugs is an important activity of the soft-
ware development process. A typical process of bug fixing
consists of the following steps: 1) a user files a bug report;
2) the bug is assigned to a developer; 3) the developer fixes
the bug; 4) changed code is reviewed and verified; and 5) the
bug is resolved. Many studies have investigated the process
of bug fixing. However, to the best of our knowledge, none
has explicitly analyzed the interval between bug assignment
and the time when bug fixing starts. After a bug assignment,
some developers will immediately start fixing the bug while
others will start bug fixing after a long period. We are blind
on developer’s delays when fixing bugs. This paper explores
such delays of developers through an empirical study on three
open source software systems. We examine factors affecting
bug fixing time along three dimensions: bug reports, source
code involved in the fix, and code changes that are required
to fix the bug. We further compare different factors by
descriptive logistic regression models. Our results can help
development teams better understand factors behind delays,
and then improve bug fixing process.

Keywords-bug fixing process; change request; fixing time;
empirical software engineering; bug report; mylyn.

I. INTRODUCTION

Fixing bugs1 is a major activity in the software develop-
ment process. It is estimated that 80% of the total cost of
a software system is spent on fixing bugs [1]. Prior studies
have proposed to predict the time needed to fix bugs [2], [3],
[4], [5], [6], [7], [8], [9]. Bug fixing time is however always
studied as a whole, i.e., from the time a bug was introduced
or reported to the time it was resolved. An ignored phe-
nomenon is that after a bug assignment, some developers
immediately start bug fixing, while other developers start
fixing the bug after a long period. In addition, after a bug
fixing is finished, some developers immediately update the
bug status (e.g., RESOLVED), while other developers update
the bug status after a long period. It is still unclear whether
the delays commonly exist in the process of bug fixing and
what factors impact the delays.

To our best knowledge, there has been no studies explic-
itly investigating the delays. This is because of the difficulty
in getting exact time when developers start and finish code
changes for bug fixing. Thanks to Mylyn, which records

1We use the same term ‘bug’ as Eclipse Bugzilla to describe an issue,
which can be an enhancement or a defect.

developers’ operations with timestamp during code edits, we
can find the exact time when developers start to edit code
and when developers finishes code edits. Exploring delays by
developers during bug fixing process is of significant interest
to help development team to

• Locate time-consuming steps
• Understand factors affecting delays by developers
• Accelerate bug fixing
• Improve the process of bug fixing
The delays incurred by developers (i.e., before and after

code change) can be affected by a number of factors. We
categorize factors to three dimensions2: bug reports, source
code involved in the fix, and code changes that are required
to fix the bug. Developers rely on the initial bug reports to
understand the bug, such as what the problem is, and how
severe the bug is. Further discussions among a bug reporter,
developers, and testers are often recorded as comments of
bug reports. Panjer [5] finds that attributes (e.g., severity,
product, component, and version) of an initial bug report are
the most influential factors of the bug fixing time, as well
as comments. Similar findings are reported in [8], [9], [10].
Characteristics of source code to be changed may affect the
bug fixing time as well. Developers may spend more time
to work out a solution, before starting to fix bugs, in the
files having larger size or being more complex. Lines of
Code (LOC) and Function Points (FP) are mostly used code
metrics [3], [11]. Code changes that are required to fix the
bug are also likely to affect bug fixing time. Canfora et al.
[2] inspect the relation of bug survival time (since a bug
was introduced) with fine grained change types during bug
fixing.

Our study complements prior work by inspecting factors
along three dimensions. The differences to prior works are:

1) We do not study the total bug fixing time, but focus on
the delays incurred by developers during bug fixing;

2) We compare the importance of factors along three
dimensions (i.e., bug reports, source code, and code
changes) all together using descriptive regression mod-
els.

2Note that our study focuses on the comparison of different factors
impacting bug fixing time other than the prediction of bug fixing time,
therefore we use post-fixing data (e.g., comments, and code changes) as
well which are only available after code change.



In this paper, we explore delays by developers through
an empirical study on three open source Eclipse projects:
Mylyn3, Eclipse Platform4 and Eclipse Plug-in Development
Environment (PDE)5. We propose three research questions
and briefly summarize our findings:

RQ1: Do delays by developers exist during bug fixing
process?

This research question help to understand the process of
bug fixing. Our results show that delays before and after
change are the top two intervals in a process of bug fixing.
The median of delays before and after changes are 210.79
and 8.55 hours, respectively.

RQ2: Can we characterize delays incurred by developers
before and after fixing bugs?

Understanding factors behind these delays can help im-
prove the process of bug fixing. We observe that delays are
impacted by three dimensions: bug reports, source code,
and code changes. For example, the median of delay before
fixing an enhancement is 1.96 times greater than the median
of delay before fixing a defect. Also, the median of delay
after fixing an enhancement is 13.8 times greater than the
median of delay after fixing a defect.

RQ3: What factors contribute to the delays most?
We identify the most influential factors and compare their

importance. We observe that the level of severity and the sum
of code churns on changed files have the highest impact on
delays before changes. The most influential factors of delays
after changes are: the maximum length of comments and the
maximum weighted methods per class (WMC).

In the reminder of this paper, we first summarize related
work in Section II. We describe the experimental setup of our
study in Section III and reports our results on investigating
three open source projects in Section IV. We then present
threats to validity of our work in Section V, and conclude
in Section VI.

II. RELATED WORK

Bug fixing is one of the core activities of software main-
tenance. Understanding factors affecting bug fixing time can
help improve the process of bug fixing. Prior studies aim at
predicting time needed for bug fixing (i.e., from the time it
was reported to the time it was fixed).

Bug reports are heavily used in prediction. Weiss et al.
[4] mine textual information from existing bug reports. They
propose to predict the fixing time of a bug by finding its
most close bug reports using K-Nearest Neighbour (kNN)
clustering algorithm. Panjer [5] performs a case study on
Eclipse projects, and reports that most influential factors af-
fecting bug fixing time are mined from initial bug properties
(e.g., severity, product, component, and version), and post-
submission data (e.g., comments). Besides comments, Giger

3http://www.eclipse.org/mylyn/
4http://www.eclipse.org/platform/
5http://www.eclipse.org/pde/

et al. [9] find the number of involved people is also a good
predictor, and similar findings are reported by Anbalagan
and Vouk [8]. Hooimeijer and Weimer [10] demonstrate the
correlation between reputation of a bug reporter and bug
triaging time. However, Bhattacharya and Neamtiu [7] report
that reputation of a bug reporter doesn’t correlate with bug
fixing time. Guo et al. [12] finds that reassignments of bugs
increase the bug fixing time, indicating that the process
can affect bug fixing time as well. Herbsleb and Mockus
[13] find that the geographical distance (e.g., longer than 30
meters) increases bug fixing time in distributed development
teams. Zend and Rine [3] propose to investigate both bug
properties (e.g., severity) and change properties (e.g., code
churn, and time spent on code editing) together.

Canfora et al. [2] analyze the relationship between fine
grained change types and bug survival time. Bug survival
time is the interval between the time a bug was introduced
and the time the bug was fixed. To identify bug introducing
changes, Kim and Whitehead [6] propose an approach.

Source code metrics, such as Lines of Code (LOC) and
Function Points (FP) are commonly used in most techniques
[3], [11]. Mauczka et al. [14] report that Weighted Methods
per Class (WMC) and Numbers Of Methods per class (NOM)
are correlated to code churn.

In contrast to prior work, we analyze two specific intervals
rather than the total bug fixing time. The first interval
is the delay before change (DBC), which starts from bug
assignment and stops when a developer starts to edit code.
The second interval is the delay after change (DAC), which
starts from the time a developer finishes code editing and
stops when the status of a bug is marked as RESOLVED.
To the best of our knowledge, no prior studies have explic-
itly examined the delays before and after change. Another
significant difference from prior studies is that we focus on
revealing factors behind the delays rather than predicting
bug fixing time. Furthermore, we compare the importance of
each factor affecting delays by adopting logistic regression
models used by Zimmermann et al. [15].

III. CASE STUDY SETUP

This section presents the design of our case study, which
aims to address the following three research questions:

1) Do delays by developers exist during bug fixing pro-
cess?

2) Can we characterize delays incurred by developers
before and after fixing bugs?

3) What factors contribute to the delays most?

A. Subject Projects

In this study, we use Mylyn interaction logs to extract
the beginning and ending time of bug fixing activity (i.e.,
editing code to fix a bug). As an Eclipse project, Mylyn is
more frequently used in other Eclipse projects. Therefore
we choose three Eclipse projects with the highest number



Table I: Top three projects with the highest number of bug
reports containing Mylyn logs.

Projects Description # of Bugs # of logs

Mylyn Task and application lifecycle 2722 3883
management framework.

Platform Core frameworks, services and 606 793
runtime provider of Eclipse.

PDE Eclipse plug-in development 524 638
environment.

of bug reports containing Mylyn logs. Table I shows the
descriptive statistics of the subject projects. In this study, we
merge data from three Eclipse projects because the number
of bug reports containing Mylyn logs is small. The three
projects have been used in prior studies by Lee et al.[16]
and Ying et al.[17], and our early work [18]. In three papers,
the data was merged.

B. Data Source

1) Bug Reports: From bug reports, we mine timestamps
when a bug was reported, assigned, and resolved, and when
the development team made the first response. A bug report
contains severity, priority, description, and other attributes.
Discussions among the reporter, developers, and testers are
recorded as comments of bug reports. The attributes used in
this study are shown in Table II. In addition, Eclipse Bugzilla
maintains the history of modifications of bug reports as well.

The status of a bug report is typically changed in the fol-
lowing order: NEW, ASSIGNED, RESOLVED, VERIFIED, and
CLOSED. However, the initial status can be UNCONFIRMED
if a bug is filed by a user.If a bug fixing is unsatisfactory, the
status will be set to REOPEN and a reassignment is needed.
A detailed life cycle of a bug report is described in the work
by Weiss et al. [4]. If a bug fixing is marked as RESOLVED,
all possible resolutions used in Eclipse projects are: Fixed,
Worksforme, Invalid, Wontfix, and Duplicate. We filter out all
bugs whose final resolution is neither Fixed nor Worksforme
to ensure that only fixed bugs are investigated.

2) Mylyn Logs: From Mylyn logs, we mine timestamps
when developers exactly start and finish bug fixing. Mylyn
logs are generated by Mylyn, an Eclipse plugin that monitors
developer’s programming activities, such as selection and
editing of files. Each activity is recorded as an event, which
is called InteractionEvent in Mylyn. An InteractionEvent
contains the following attributes: StartDate (i.e., timestamp
when the event starts), EndDate (i.e., timestamp when the
event ends), OriginId (i.e., identifier of the UI affordance
that tracks the event), StructureHandle (i.e., names of the
files involved in the event), and Kind (i.e., type of the
event). There are eight types6 of events. Only three of
them are triggered by a developer, which are Command,
Edit and Selection. Mylyn logs are stored in XML format,

6http://wiki.eclipse.org/Mylyn Integrator Reference#Event Kinds

Table II: Selected attributes of a bug report used in Eclipse
projects.

Field Description

Bug Id Unique identification number of the problem.
OS Operating System where the problem was found.

Severity How severe the problem is and whether it is an
enhancement request.

Reporter Person who filed the bug.
Assigned To Person who is responsible to fix the bug.

CC People who will be notified on any change.
Summary Short summary of the problem.

Description Description of the problem with timestamp.
Comment Discussion on the problem with timestamp.

then compressed, encoded (to Base64 format), and attached
to bug reports with the name ”mylyn/context/zip”. Thanks
to this naming rule, we can easily find all bug reports
that contain Mylyn logs through Eclipse Bugzilla’s search
engine. We use bug ids to locate corresponding code changes
from CVS commit log.

3) CVS Repository: CVS is a widely used version control
system, and used in our three subject projects. From CVS
repository, we mine code commits for bug fixings and then
compute static and historical metrics. Each commit has
a message which generally describes the purpose of the
commit and often contains a bug id.

C. Data Collection and Preprocessing

1) Collection: From Eclipse Bugzilla, we downloaded all
bug reports that belong to our three subject projects and
contain Mylyn logs. We extracted Mylyn logs from the bug
reports. We collected snapshot of CVS repositories of the
three subject projects on Oct. 20, 2011.

2) Preprocessing: We generate a list of bug ids of all
downloaded bug reports. A bug id is often included in the
commit log. If a bug id is present, we can further link the
commit to its corresponding bug report. To identify a bug id,
we develop a tool to extract all digit numbers from commit
logs first, and then compare these digit numbers with the
list of bug ids that we obtain from Eclipse Bugzilla’s search
engine. If matched, we consider that the commit is dedicated
to fix the corresponding bug, and record the names and
revisions of all files changed in this commit. In our data,
only two bugs (i.e., #250640 and #269959) are not found
after examining all commit logs. Based on bug ids, we link
together a bug report, Mylyn logs, and a group of involved
files and their corresponding revisions.

D. Intervals Extraction

A typical process of bug fixing is: 1) a user files a bug
report; 2) the bug is assigned to a developer; 3) the developer
fixes the bug; 4) changed code is reviewed and verified; and
5) the bug is resolved. Correspondingly, the bug fixing time
can be split into five consecutive intervals:



• Delay Before Response (DBR):
Interval between a bug is reported and it gets the first
response from development teams.

• Delay Before Assigned (DBA):
Interval between a bug gets the first response and it is
assigned.

• Delay Before Change (DBC):
Interval between a bug is assigned and the developer
starts to fix the bug.

• Duration of Bug Fixing (DBF):
Interval between the developer starts and finishes the
bug fixing.

• Delay After Change (DAC):
Interval between the developer finishes the bug fixing
and status of the bug is changed to RESOLVED.

We mine from the history of a bug report to extract the
timestamps when it was reported, when it got first response
(i.e., the first modification on a bug report’s attributes or the
first post of a comment), when it was assigned, and when its
status was changed to RESOLVED with resolution as either
Fixed or Worksforme. We denote above four timestamps as
Treported, Tresponded, Tassigned, and Tresolved, respectively.
We mine from Mylyn logs to extract the timestamps of
the first and last Edit event (Edit event is triggered when
a developer selects any text in opened source file). We
denote above two timestamps as TfixBegin and TfixEnd.
We compute the intervals using following equations:

DBR = Tresponded − Treported (1)

DBA = Tassigned − Treported (2)

DBC = TfixBegin − Tassigned (3)

DBF = TfixEnd − TfixBegin (4)

DAC = Tresolved − TfixEnd (5)

E. Metrics Computation

1) From Bug Reports: We compute metrics based on
severity, operating system, title, description and comments
of bug reports.

Severity of a bug: We recover the initial state of a bug
report based on its history. Based on the initial severity,
we mark each bug report as either an enhancement or a
defect. With the level of initial severity, we further divide
all defects into two groups: defects with Low severity (i.e.,
trivial, minor, or normal), and defects with High severity
(i.e., major, critical, or blocker).

Operating system where a bug was found: The operating
systems in our data are: Windows, Linux, Mac OS, Solaris
and All. We exclude “All” since where the bug was found
is vague (In our data, 524 bugs are filtered out.). And we
also exclude “Solaris” since there is only 1 bug that was
reported on Solaris. Based on the operating system, we mark

all remaining bugs whether it was found on Windows, Linux
or Mac OS, respectively.

Description of a bug report: We compute the literal length
(i.e., number of characters) of the title and description of a
bug report, and denote them as lenT itle and lenDesc. In
addition, we compute the average and the maximum literal
length of all comments. Such post submissions can reflect
the complexity to understand bug reports.

2) From Source Code: We compute metrics from the
code snapshots at the revision just before the first change of
each bug fixing. We made a tool to compute static metrics
based on ANTLR7.

ANTLR: ANTLR is a compiler’s compiler. It supports
to traverse abstract syntax tree (AST) by embedding code
snippets into the description file of the grammar. We chose
ANTLR based on its extensibility to process other program-
ming languages (e.g., C, C++). In this study, we embed our
code snippets to a publicly available Java 1.5 grammar file8.

Computation: For each file, we count its lines of code
(LOC). For each class, we compute its weighted method per
class (WMC) and count its number of methods (NOM). For
each method, we compute its McCabe’s complexity (VG).
Considering that there may be more than one file involved
in the fixing of one bug, we further compute the average,
sum, and maximum value of these metrics.

3) From Source Code Changes: For each bug, we com-
pute its corresponding change metrics from all commits that
are linked to it. We compute code churn and number of
changed files to measure the size of the change. If there
are more than one revision in a same file for the same bug,
we accumulate code churn of all these revisions. We further
compute metrics based on fine grained change types, which
are extracted by ChangeDistiller.

ChangeDistiller: This tool was created by Fluri et al. [19]
to extract fine grained change types. It accepts two files
as input and then extracts changes using tree differencing
algorithms.In our study, ChangeDistiller produces more than
160 change types. We further categorize these fined grained
change types into 27 groups.

F. Analysis Method

1) Analyzing the relationship between delays and factors:
We divide all bugs into two groups by each individual factor,
respectively. We use the Wilcoxon rank sum test [20] to
compare the delays (i.e., DBC and DAC) of two groups. The
Wilcoxon rank sum test is a non-parametric statistical test to
assess whether two independent distributions have equally
large values. Non-parametric statistical methods make no
assumptions about the distributions of assessed variables.
2) Analyzing the importance of different factors on affect-
ing delays: We build a logistic regression model [15] from

7http://www.antlr.org
8http://www.antlr.org/grammar/1152141644268/Java.g



Table III: Quantiles of bug fixing time independently mined
from bug reports and Mylyn logs (unit: hour).

Source 0% 25% 50% 75% 100%

Bug Reports 0.03 111 586 2746 46748
Mylyn Logs 0.02 0.17 0.68 4.16 14790

Bug Report Mylyn Log

0
2

4
6

8
10

lo
g(
ho
ur
s+
1)

Figure 1: Boxplot of log(bugFixingTimeFromBugReport+1)
and log(bugFixingTimeFromMylynLog+1).

all factors that are investigated in this study. We use AIC
to select independent factors. A logistic regression model
combines different factors to predict the probability of the
occurrence of an event. We use the magnitude of coefficient
of each factor to compare their importance to the delays.
In addition, positive sign of coefficient indicates a positive
correlation, and vice versa.

IV. CASE STUDY RESULTS

In this section, we report and discuss results of our
empirical study performed on three Eclipse projects.

RQ1: Do delays by developers exist during bug fixing
process?

Motivation. This question is preliminary to the other ques-
tions. We observed that bug#162007 was reported on Oct.
13rd, 2006, and assigned on Oct. 23rd, 2006, but the bug
fixing was started on Mar. 25th, 2011. Another bug #246547
was reported and assigned on Sep., 8th, 2008, and bug fixing
was performed on the same day and lasted for 8 minutes, but
the status of this bug was marked to RESOLVED on Feb.,
24th, 2011. In these two cases, there exist delays incurred by
developers before and after change. In this research question,
we determine if delays incurred by developers commonly
exist in the process of bug fixing.
Approach. To answer this research question, we inde-
pendently compute bug fixing time from bug reports and
Mylyn logs and obtain two groups of bug fixing time. From
bug reports, bug fixing time is the interval between bug
assignment and bug resolution (status of bug is changed
to RESOLVED). From Mylyn logs, bug fixing time is the
interval between first and last Edit event.

Table IV: Quantiles of intervals in our subject systems (unit:
hour).

Interval 0% 25% 50% 75% 100% Std

DBR 0.00 0.06 1.72 27.12 23226 1423
DBA 0.00 0.00 0.11 20.38 24116 1968
DBC 0.00 22.86 210.79 1506.97 38730 4716
DBF 0.02 0.17 0.68 4.16 14790 800
DAC 0.00 3.01 8.55 274.21 29883 2269

DBR DBA DBC DBF DAC

0
2

4
6

8
10

lo
g(
ho
ur
s+
1)

Figure 2: Boxplot of logarithm of all intervals: log(DBR+1),
log(DBA+1), log(DBC+1), log(DBF+1), and log(DAC+1).

We test the following null hypothesis.
H01: there is no difference between the bug fixing time that
are independently extracted from bug reports and Mylyn
logs.

We perform one sided Wilcoxon rank sum test for H01,
using the 5% level (i.e., p-value < 0.05).
Findings. The p-value of one sided Wilcoxon rank sum
test is less than 2.2e-16, we then reject H01. The bug
fixing time independently computed from bug reports and
Mylyn logs are significantly different. The delays incurred
by developers before and after bug fixing activity do exist.
We show boxplot of bug fixing time in the two groups in
Figure 1 and report their quantiles in Table III.

To understand the process of bug fixing, we further study
the intervals defined in Section III-D. We show the boxplot
of all intervals in Figure 2 and report their quantiles in Table
IV. Development teams often respond to newly reported
bugs in two hours (e.g., the median of DBR is 1.72 hours),
and finishes bug assignment quickly (e.g., the median of
DBA is 0.11 hours). To our surprise, the time spent on
performing code change is pretty short (e.g., the median of
DBF is 0.68 hours). Delays before and after change are much
longer than all other steps during the process of bug fixing
(e.g., the medians of DBC and DAC are 210.79 and 8.55
hours, respectively). It is therefore of significant interest to
study factors impacting the delays before and after change.
Negative Delays. To our surprise, we find that nearly 10%
bugs have a negative interval DBC, which means that a
developer has already started to fix a bug even before the
bug is reported. This may be caused by several reasons:
e.g., a developer reports and fixes the bug by himself but



Table V: Results of Wilcoxon test for groups split by
severity. (n.s stands for not statistically significant, the same
below.)

Delay Pair of Groups Compared Test p-value

DBC
Enhancement (19%) v.s. Defect (81%) greater < 0.01

LowSeverity (91%) v.s. HighSeverity (9%) greater < 0.05

DAC
Enhancement (19%) v.s. Defect (81%) greater < 0.001

LowSeverity (91%) v.s. HighSeverity (9%) less n.s

Table VI: Quantiles of delays in groups split by severity
(unit: hour)

Delay Severity 0% 25% 50% 75% 100%

DBC

Enhancement 0.03 27.99 364 3564 33737
Defect 0.00 21.61 186 1224 38730

LowSeverity 0.00 22.85 198 1292 38730
HighSeverity 0.02 15.54 110 701 18159

DAC
Enhancement 0.00 3.02 56.40 613 20284

Defect 0.00 3.00 4.08 181 29883

forgets to fill the field of assignee9, or a developer just
copies Mylyn contexts from previous task which contains
change information of old bugs. Considering these cases are
abnormal, we filter out all bugs that have negative interval
DBC or DAC from our dataset.

RQ2: Can we characterize delays incurred by developers
before and after fixing bugs?
Motivation. This research question aims to characterize the
delays DBC and DAC by factors from three dimensions: bug
reports, source code involved in the fix, and code changes
that are required to fix the bug.
Approach. To address this question, we use each individual
factor f to divide all bugs into two groups, respectively. For
each factor f , we test the following null hypothesis.
H1

02: there is no difference between the delay DBC of bugs
in the two groups divided by the factor f .
H2

02: there is no difference between the delay DAC of bugs
in the two groups divided by the factor f .

We perform one sided Wilcoxon rank sum test for H1
02

and H2
02, using the 5% level (i.e., p-value < 0.05).

Findings.
1) Property of Bug Reports: We discuss the impact of

initial severity, operating system where a bug was found,
and description of a bug report.

Severity of a bug: We present the results of the one sided
Wilcoxon rank sum test in Table V. In Table VI, we further
report quantiles of delays of groups that passed the Wilcoxon
test.

For the delay DBC, the p-values are less than 0.05, we
then reject H1

02 for both factors: type of bug and severity

9We use the history of modifications on assignee field to detect bug
assignment. As assignee is set to xx-inbox by default, changing assignee
back to xx-inbox is not considered as bug assignment.

Table VII: Results of Wilcoxon test for groups split by
operating system

Delay Pair of Groups Compared Test p-value

DBC
Windows (67%) v.s. Not Windows (33%) greater < 0.01

Linux (26%) v.s. Not Linux (74%) less < 0.05
Mac OS (7%) v.s. Not Mac OS (93%) less < 0.05

DAC
Windows (67%) v.s. Not Windows (33%) greater n.s

Linux (26%) v.s. Not Linux (74%) less < 0.05
Mac OS (7%) v.s. Not Mac OS (93%) greater n.s

Table VIII: Quantiles of delays in groups split by operating
system (unit: hour)

Delay Severity 0% 25% 50% 75% 100%

DBC

Windows 0.00 28.61 252 1824 38730
Not Windows 0.00 17.98 159 1080 21840

Linux 0.00 20.24 167 1099 21840
Not Linux 0.00 26.12 216 1699 38730

Mac OS 0.87 8.91 117 888 13046
Not Mac OS 0.00 26.42 212 1506 38730

DAC
Linux 0.00 3.01 3.10 72.14 18018

Not Linux 0.00 2.97 16.73 327 29883

level of defect. The median of DBC on fixing enhancements
is 1.96 times that of fixing defects. The median of DBC on
fixing defects with high severity is 0.56 times that of fixing
defects with low severity. To optimize delays before change,
development teams must be careful on deciding severity of
bugs.

For the delay DAC, the p-value is less than 0.05 on groups
split by type of bug, but greater than 0.05 on groups split
by severity level of defect. We then reject H2

02 for type of
bug and accept H2

02 for severity level of defect. The median
of DAC on fixing enhancements is 13.8 times that of fixing
defects. A possible explanation is that it takes more time
to verify enhancements than defects whatever the defect’s
severity is.

Operating system where a bug was found: We present
the results of the one sided Wilcoxon rank sum test in Table
VII. In Table VIII, we further report quantiles of delays of
groups that pass Wilcoxon test.

For the delay DBC, the p-values are less than 0.05, we
then reject H1

02 for three factors: whether a bug was found
on Windows, Linux, or Mac OS, respectively. The median
of DBC on fixing bugs for Windows is 1.58 times that of
fixing bugs for other operating systems. The median of DBC
on fixing bugs for Linux is 0.77 times that of fixing bugs
for other operating systems. The median of DBC on fixing
bugs for Mac OS is 0.55 times that of fixing bugs for other
operating systems.

For the delay DAC, the p-value is less than 0.05 only
on groups split by the factor that whether a bug was found
on Linux. We then reject H2

02 for Linux and accept H2
02

for the other two. The median of DAC on fixing bugs for
Linux is 0.19 times that of fixing bugs for other operating



Table IX: Wilcoxon test results for groups split by descrip-
tion of a bug report.

Delay Factor Median Test p-value

DBC

lenTitle 54 less n.s
lenDescription 318 less n.s

avg lenComment 198 less < 0.01
max lenComment 635 less < 0.001

DAC

lenTitle 54 less n.s
lenDescription 318 less n.s

avg lenComment 198 less < 0.001
max lenComment 635 less < 0.001

systems. A possible explanation is that Linux is widely used
by development teams, and it is easier to automate testing on
Linux. Further studies are needed to identify the root cause
of this shorter delay.

Description of a bug report: For each metric shown
in Table IX, we obtain two groups using the median of
metric: bugs with metric < median(metric) and bugs with
metric ≥ median(metric). We report results of the one
sided Wilcoxon rank sum test in Table IX.

From Table IX, the length of title and description of bug
report do not affect the delays DBC and DAC. Increasing
length of the text of comments also increases the delays DBC
and DAC. A possible cause of long comments is that the bug
is not clearly described or the bug is too complicated.Further
studies are needed to identify the reason why developers
write long comments.

2) Property of Source Code: We discuss the effect of
size and complexity of the source code to be changed. To
measure the size, we use lines of code (LOC) and number
of methods (NOM). To measure the complexity, we use
weighted method per class (WMC). For each metric, we use
its median to separate bugs into two groups. For every two
groups, we perform a one sided Wilcoxon rank sum test to
examine whether delays of the two groups are statistically
different. We report our results in Table X.

Lines Of Code (LOC): We observe that only total lines of
code affects the delay DBC, while the average and maximum
lines of code don’t affect DBC. The delay DAC is affected
by all three statistic values of lines of code. The more lines
of code the files (i.e., files to be changed for bug fixing)
have, the longer delay DBC and DAC will happen.

Number Of Methods (NOM): We observe that only the
total number of methods affects the delay DBC, while the
average and maximum number of methods don’t affect DBC.
The delay DAC is affected by total and maximum number
of methods, but not average number of methods. The more
number of methods the files (i.e., files to be changed for bug
fixing) have, the longer delay DBC and DAC will happen.

Weighted Methods per Class (WMC): We observe that
the sum of WMC affects the delay DBC, while the average
and maximum of WMC don’t.The delay DAC is affected
by total and maximum of WMC, but not by the average of
WMC. The more complex the files (i.e., files to be changed

Table X: Wilcoxon test results for groups split by property
of source code.

Delay Factor Median Test p-value

DBC

avg LOC 377 greater n.s
sum LOC 1106 less < 0.001
max LOC 667 less n.s
avg NOM 16 greater n.s

sum NOM 48 less < 0.001
max NOM 29 less n.s
avg WMC 43 greater n.s

sum WMC 128 less < 0.01
max WMC 84 less n.s

DAC

avg LOC 377 less < 0.01
sum LOC 1106 less < 0.01
max LOC 667 less < 0.01
avg NOM 16 less n.s

sum NOM 48 less < 0.01
max NOM 29 less < 0.01
avg WMC 43 less n.s

sum WMC 128 less < 0.01
max WMC 84 less < 0.05

Table XI: Wilcoxon test results for groups split by property
of code change.

Delay Factor Median Test p-value

DBC

numChangedFiles 2 less < 0.001
avg codeChurn 19 less < 0.001
sum codeChurn 50 less < 0.001
max codeChurn 35 less < 0.001

numMacroChangeTypes 6 less < 0.001
sumMacroChangeTypes 16 less < 0.001
numMicroChangeTypes 8 less < 0.001
sumMicroChangeTypes 14.5 less < 0.001

DAC

numChangedFiles 2 less < 0.001
avg codeChurn 19 less < 0.001
sum codeChurn 50 less < 0.001
max codeChurn 35 less < 0.001

numMacroChangeTypes 6 less < 0.001
sumMacroChangeTypes 16 less < 0.001
numMicroChangeTypes 8 less < 0.001
sumMicroChangeTypes 14.5 less < 0.001

for bug fixing) are, the longer delay DBC and DAC will
happen.

3) Property of Code Change: We discuss the effect
of code changes, which are characterized by code churn,
number of changed files, and fine grained change types.
For each metric, we use its median to separate bugs into
two groups. For every two groups, we perform a one sided
Wilcoxon rank sum test to examine whether delays of the
two groups are statistically different. We report our results
in Table XI, Table XII, and Table XIII, respectively. The
impact on the delays by all these metrics are statistically
significant.

Code Churn: Code churn measures the size of change in
terms of lines of code changed. From Table XI, the larger the
code churn is, the longer delay DBC and DAC will happen.

Number of Changed Files: Number of changed files
measures the propagation of change. From Table XI, we
observe that the more files are changed when fixing a bug,



Table XII: Wilcoxon test results for groups split by fine
grained change types.

Delay Change Type Freq. Test p-value

DBC

method invocation: ins 64% less < 0.001
if: ins 59% less < 0.001
add functionality: method 54% less < 0.001
method invocation: update 49% less < 0.01
local variable: ins 46% less < 0.001
add functionality: attribute 43% less < 0.001
method invocation: del 40% less < 0.001
if: delete 40% less < 0.001
assignment: ins 39% less < 0.001
local variable: update 34% less < 0.001

DAC

method invocation: ins 64% less < 0.001
if: ins 59% less < 0.001
add functionality: method 54% less < 0.001
method invocation: update 49% less < 0.001
local variable: ins 46% less < 0.001
add functionality: attribute 43% less < 0.001
method invocation: del 40% less < 0.001
if: delete 40% less < 0.001
assignment: ins 39% less < 0.001
local variable: update 34% less < 0.001

the longer delay DBC and DAC will happen.
Summary of Change Types: We also present statistic

values computed from fine grained change types in Table
XI. The more types of changes will be performed, the longer
delay DBC and DAC will happen.

To investigate the effect of different change types, we
further examine fine grained change types.

Fine Grained Change Types: In our data, ChangeDis-
tiller extracted over 160 fine grained change types. To show
the effect of fine grained change types, we choose the first
10 change types that occur most frequently. Based on each
change type, we split all bugs into two groups: the change
type doesn’t occur or occurs. From Table XII, the effects of
all change types are statistically significant.

We further categorize fine grained change types and
examine the top 10 categories. We present our results in
Table XIII. The categories still have statistically significant
effect on delays.

RQ3: What factors contribute to the delays most?
Motivation. We have discussed individual factors separately,
but these factors may have cross-correlations. This research
question aims to find independent factors and compare their
importance on affecting delays.
Approach. A logistic regression model combines different
factors together to predict the probability of the occurrence
of an event. To address this question, we build a logistic
regression model and define two events: long DBC and long
DAC. Long DBC happens if DBC is greater than the median
of all DBCs. We define long DAC similarly.

In order to compare all factors together, we trans-
form all factors to boolean or categorical values. For
example, we convert severity to two boolean values:
isBug (1 for “defect”, and 0 for “enhancement”) and

Table XIII: Results of the Wilcoxon test for groups split by
categories of fine grained change types.

Delay Change Type Freq. Test p-value

DBC

method invocation 81% less < 0.05
if / while 66% less < 0.001

add functionality 64% less < 0.001
local variable 63% less < 0.01

assignment 53% less < 0.001
conditional expression 48% less < 0.05

comment 43% less < 0.01
return statement 37% less < 0.001

delete functionality 28% less < 0.01
java doc 26% less < 0.001

DAC

method invocation 81% less < 0.01
if / while 66% less < 0.01

add functionality 64% less < 0.001
local variable 63% less < 0.001

assignment 53% less < 0.001
conditional expression 48% less < 0.01

comment 43% less < 0.001
return statement 37% less < 0.001

delete functionality 28% less < 0.001
java doc 26% less < 0.001

isBugOfHighSeverity (1 for “major”, “critical”, and
“blocker”, and 0 for “trivial”, “minor”, and “normal”).
We convert operating system to three boolean values:
isOSWindows, isOSLinux, and isOSMac. For all other
factors, we use their median to divide them into two groups
(i.e., 1 if equal or greater than median, and 0 otherwise).

We use our entire dataset to build two models to describe
the importance of different factors on delays before and after
change, respectively:

• Probability that a developer starts to fix a bug after a
period longer than the median of DBC.

• Probability that the status of a bug is set to RESOLVED
after a period longer than the median of DAC.

We build initial logistic regression model based on all
factors, and then perform AIC to select independent factors.
Findings. Table XIV presents finally selected factors in our
two models.We interpret the models to show the importance
of factors on delay DBC and DAC, respectively.

1) Interpreting the Descriptive Model “Long DBC”: The
most influential factor on the delay before change is the level
of severity.Its negative sign indicates that high severity (i.e.,
“major”, “critical”, or “blocker”) reduces DBC. The second
important factor is the sum of code churn during bug fixing.
Its positive sign shows that an increase of code churn will
increase DBC. A possible explanation is that a developer
will spend more time preparing to fix a bug if more lines of
code are to be affected.

Sum of number of methods in changed files and the
maximum length of all comments in the bug reports are
other two factors impacting the delay DBC. We don’t build
logistic regression model based on fine grained change types,
since the metrics computed from fine grained change types
are not selected in this model.



Table XIV: Descriptive logistic regression models for (1)
Long DBC, and (2) Long DAC; n.s stands for not statistically
significant and dash “-” means that the metric is not selected
in the final model.

FACTOR
Long DBC Long DAC

COEF. p-value COEF. p-value

isBug - - -0.466 < 0.01
isBugOfHighSeverity -0.481 < 0.05 - -
isOSLinux n.s n.s -0.466 < 0.01
isOSMac n.s n.s n.s n.s
lenDescription - - -0.328 < 0.05
avg lenComment - - n.s n.s
max lenComment 0.246 < 0.05 0.728 < 0.001
max LOC - - n.s n.s
sum NOM 0.307 < 0.05 - -
avg WMC n.s n.s - -
sum WMC - - 0.521 < 0.05
max WMC - - -0.721 < 0.01
nbFiles - - n.s n.s
avg codeChurn - - 0.321 < 0.05
sum codeChurn 0.373 < 0.01 - -
sumMicroChangeTypes - - n.s n.s

2) Interpreting the Descriptive Model “Long DAC”: The
most influential factors on the delay after change are the
maximum length of all comments in the bug report and the
WMC of changed files. The sign of coefficients indicate that
the maximum length of all comments and sum of WMC
have a positive impact, while the maximum WMC has a
negative impact on the delay DAC. The type of bug, the
operating system where a bug was found, the length of bug
description, and average code churn also impact the delay
DAC.

V. THREATS TO VALIDITY

We now discuss the threats to validity of our study
following common guidelines provided in [21].

Construct validity threats concern the relation between
theory and observation. Our construct validity threats are
mainly due to measurement errors. We rely on Mylyn logs to
identify exact starting and ending time of a bug fixing task.
Because some files may be edited without using Mylyn, our
file editing information might be biased.

Threats to internal validity concern our selection of
subject systems and analysis methods. Although we study
three software systems, some of the findings might still
be specific to the bug fixing process of the three software
systems which are all Eclipse projects. Future studies should
consider using a different tool to collect file editing data.

Threats to external validity concern the possibility to gen-
eralize our results. We only analyzed three Eclipse projects,
because of the limited adoption of Mylyn in open source
projects. Further studies on different open and closed source
systems are desirable to verify our findings.

Reliability validity threats concern the possibility of
replicating this study. We attempt to provide all the necessary
details to replicate our study. Eclipse CVS and Bugzilla are

publicly available to obtain the same data. We also make
our data available10.

VI. CONCLUSION

In this paper, we analyzed delays incurred by developers
in three open source software systems, Mylyn, Eclipse
Platform, and Eclipse PDE. Understanding factors causing
the delays can help development teams with prioritization
during bug triaging. We explored factors impacting the
delays from three dimensions: bug reports, source code
involved in the fix, and code changes that are required to
fix the bug. We further compared all factors and identified
the most influential factors affecting the delays before and
after change.

Our results show that the delays do exist in the process
of bug fixing. Moreover, the delay before and after change
are two major intervals of the process of bug fixing. Our
findings provide development teams insights in prioritizing
bugs and optimizing bug assignment, so that they can reduce
delays to improve their process of bug fixing. We summarize
our findings of most influential factors:

• Type of a Bug: The median of DBC (respectively DAC)
on fixing enhancements is 1.96 (respectively 13.8)
times that of fixing defects. Development teams should
investigate in details their process after a developer
finishes to implement an enhancement. If the longer
DAC is caused by verification, then more resources
should be allocated on testing.

• Severity of a Bug: The median of DBC on fixing
defects with high severity is 0.56 times that of fixing
defects with low severity. This indicates that the level
of severity is an important reference for developers
when deciding which bug to fix first. Development
teams should make proper level of severity as early
as possible.

• Operating System: The median of DBC (respectively
DAC) when fixing bugs that are found on Linux is
0.77 (respectively 0.19) times that of other operating
systems. Development teams should further investigate
why both delays are shorter for bugs found on Linux,
so that they can improve their bug fixing process for
bugs found on other operating systems.

• Description of a Bug: Increasing the literal length of
description can increase DAC. If a bug report has a
longer description, development teams should examine
whether it is necessary to split into several simpler bugs.

• Comments of a Bug: The maximum length of all com-
ments impacts both DBC and DAC. Development teams
should examine bug reports with long comments in
order to understand the reasons behind long comments
size, and prevent long comments in the future.

10http://tinyurl.com/delaystudy-zip



• Property of Source Code: Sum of NOM is more im-
portant than LOC and WMC when determining DBC.
WMC is more important than LOC and NOM when
determining DAC. These metrics can help development
teams to prioritize bugs during bug triaging.

• Property of Code Change: An increase of the sum of
code churns increases DBC and an increase of average
code churns increases DAC.

In the future, we plan to study more data sources from
more projects in order to make our findings more generic.
We also plan to perform a survey with developers of these
projects to verify the practicalness of our results.

ACKNOWLEDGMENT

The authors would like to thank Daniele Romano at Delft
University of Technology and Michael Wrsch at University
of Zurich for their kind help on solving ChangeDistiller
problems.

REFERENCES

[1] N. I. of Standards & Technology, “The economic impacts of
inadequate infrastructure for software testing,” May 2002, uS
Dept of Commerce.

[2] G. Canfora, M. Ceccarelli, L. Cerulo, and M. Di Penta, “How
long does a bug survive? an empirical study,” in Reverse
Engineering (WCRE), 2011 18th Working Conference on, oct.
2011, pp. 191 –200.

[3] H. Zeng and D. Rine, “Estimation of software defects fix
effort using neural networks,” in Proceedings of the 28th
Annual International Computer Software and Applications
Conference - Workshops and Fast Abstracts - Volume 02, ser.
COMPSAC ’04. Washington, DC, USA: IEEE Computer
Society, 2004, pp. 20–21.

[4] C. Weiss, R. Premraj, T. Zimmermann, and A. Zeller, “How
long will it take to fix this bug?” in Proceedings of the Fourth
International Workshop on Mining Software Repositories, ser.
MSR ’07. Washington, DC, USA: IEEE Computer Society,
2007, pp. 1–.

[5] L. D. Panjer, “Predicting eclipse bug lifetimes,” in Proceed-
ings of the Fourth International Workshop on Mining Software
Repositories, ser. MSR ’07. Washington, DC, USA: IEEE
Computer Society, 2007, pp. 29–.

[6] S. Kim and E. J. Whitehead, Jr., “How long did it take to fix
bugs?” in Proceedings of the 2006 international workshop on
Mining software repositories, ser. MSR ’06. New York, NY,
USA: ACM, 2006, pp. 173–174.

[7] P. Bhattacharya and I. Neamtiu, “Bug-fix time prediction
models: can we do better?” in Proceedings of the 8th Working
Conference on Mining Software Repositories, ser. MSR ’11.
New York, NY, USA: ACM, 2011, pp. 207–210.

[8] P. Anbalagan and M. Vouk, “On predicting the time taken
to correct bug reports in open source projects,” in Software
Maintenance, 2009. ICSM 2009. IEEE International Confer-
ence on, sept. 2009, pp. 523 –526.

[9] E. Giger, M. Pinzger, and H. Gall, “Predicting the fix time
of bugs,” in Proceedings of the 2nd International Workshop
on Recommendation Systems for Software Engineering, ser.
RSSE ’10. New York, NY, USA: ACM, 2010, pp. 52–56.

[10] P. Hooimeijer and W. Weimer, “Modeling bug report quality,”
in Proceedings of the twenty-second IEEE/ACM international
conference on Automated software engineering, ser. ASE ’07.
New York, NY, USA: ACM, 2007, pp. 34–43.

[11] Y. Ahn, J. Suh, S. Kim, and H. Kim, “The software main-
tenance project effort estimation model based on function
points,” Journal of Software Maintenance, vol. 15, no. 2, pp.
71–85, Mar. 2003.

[12] P. J. Guo, T. Zimmermann, N. Nagappan, and B. Murphy,
“”not my bug!” and other reasons for software bug report
reassignments,” in Proceedings of the ACM 2011 conference
on Computer supported cooperative work, ser. CSCW ’11.
New York, NY, USA: ACM, 2011, pp. 395–404.

[13] J. Herbsleb and A. Mockus, “An empirical study of speed and
communication in globally distributed software development,”
Software Engineering, IEEE Transactions on, vol. 29, no. 6,
pp. 481 – 494, june 2003.

[14] A. Mauczka, T. Grechenig, and M. Bernhart, “Predicting
code change by using static metrics,” in Proceedings of the
2009 Seventh ACIS International Conference on Software
Engineering Research, Management and Applications, ser.
SERA ’09. Washington, DC, USA: IEEE Computer Society,
2009, pp. 64–71.

[15] T. Zimmermann, N. Nagappan, P. J. Guo, and B. Murphy,
“Characterizing and predicting which bugs get reopened,”
in Software Engineering (ICSE), 2012 34th International
Conference on, june 2012, pp. 1074 –1083.

[16] T. Lee, J. Nam, D. Han, S. Kim, and H. P. In, “Micro
interaction metrics for defect prediction,” in Proceedings of
the 19th ACM SIGSOFT Symposium and the 13th European
Conference on Foundations of Software Engineering, ser.
ESEC/FSE ’11. New York, NY, USA: ACM, 2011, pp.
311–321.

[17] A. Ying and M. Robillard, “The influence of the task on pro-
grammer behaviour,” in IEEE 19th International Conference
on Program Comprehension, ser. ICPC’11, june 2011, pp. 31
–40.

[18] F. Zhang, F. Khomh, Y. Zou, and A. Hassan, “An empirical
study of the effect of file editing patterns on software quality,”
in Reverse Engineering (WCRE), 2012 19th Working Confer-
ence on, oct. 2012.

[19] B. Fluri, M. Würsch, M. Pinzger, and H. Gall, “Change dis-
tilling: Tree differencing for fine-grained source code change
extraction,” IEEE Transactions on Software Engineering,
vol. 33, no. 11, pp. 725–743, NOV 2007.

[20] D. J. Sheskin, Handbook of Parametric and Nonparametric
Statistical Procedures, Fourth Edition. Chapman & Hal-
l/CRC, Jan. 2007.

[21] R. K. Yin, Case Study Research: Design and Methods - Third
Edition, 3rd ed. SAGE Publications, 2002.


