
Using Graph Patterns to Extract Scenarios

Jingwei Wu, Ahmed E. Hassan and Richard C. Holt
Software Architecture Group

Department of Computer Science
University of Waterloo
Waterloo, ON, Canada

{j25wu, aeehassa, holt}@plg.uwaterloo.ca

Abstract

Scenario diagrams are useful for helping software de-
velopers to understand the interactions among the compo-
nents of a software system. In this paper, we present a semi-
automatic approach to extracting scenarios from the imple-
mentation of a software system.

In our approach, the source code of a software system is
represented as a graph and scenarios are specified as graph
patterns. A relational calculator, Grok, is extended to sup-
port graph pattern matching. Grok, as extended, is used in
our analysis of the Nautilus open source file manager. Mul-
tiple scenarios are extracted and analyzed. These scenarios
have helped us to understand Nautilus’s architecture.

1 Introduction

In reverse engineering, it is common to extract software
architectures from source code and system documentation
[1, 2]. An extracted architecture is often represented in
box-and-arrow diagrams. These diagrams help us under-
stand the system’s architecture, but do not express the order
of component interactions in the execution of the system.
Software engineers use scenarios to illustrate sequences of
interactions among the components within a software sys-
tem [3, 20].

Scenarios provide a good mechanism for understanding
software systems and validating software architectures [3].
Many benefits and uses of scenarios have been discussed.
For example, in the 4+1 view model proposed by Kruchten,
the scenario view consists of a small set of critical use cases,
which illustrate how the other four views (logical, process,
development and physical) are interrelated [4]. To gain a
better understanding of a software system, we need to ex-
tract a useful set of scenarios. The major resources we can
use to do the extraction include the requirement specifica-

tions, the system’s implementation, and the system’s run-
time behavior.

Scenario extraction is a challenging problem. In many
cases, the software system must be instrumented and must
run in a profiler which traces function calls and data ac-
cesses. The system’s source code or execution environment
need to be modified to extract scenarios. Such modifications
may not be possible or may be too time consuming to im-
plement. In this paper, we present an approach that requires
no changes to the source code of a software system or its
execution environment. This approach is based on the static
analysis of source code. We use graph patterns to extract
scenarios from the information gathered from source code.
The scenarios that we consider describe sequences of inter-
actions among the components in a software architecture.

We demonstrate our approach through a case study on an
open source file manager, Nautilus [6], which is developed
as an integral part of the GNOME [7] desktop environment.
Nautilus takes the Windows Explorer metaphor, but it has
more elegant features. Figure 1 shows a music view embed-
ded in the Nautilus window. We consider Nautilus a good
candidate for a case study for the following reasons:

1. Its architecture has little documenation;
2. It is a moderately large system (290 KLOC);
3. It is built on the GNOME component technology

and the CORBA technology, and it has an interesting
mechanism of communicating with componentized
views (e.g., Music view and Photo Album view).

The rest of this paper is organized as follows. Section 2
gives an overview of the process we used to do the analysis
of Nautilus. Section 3 describes an extension to Grok [9]
for graph pattern matching. Grok is a tool we used to do
scenario extraction. Section 4 describes how graph pat-
terns were used to extract scenarios for a software system.
Section 5 discusses why we used graph patterns and also
presents lessons learned in our work. Section 6 considers
the related work. Section 7 concludes the paper.



Figure 1. The Nautilus application

2 Overview of Analysis

This section explains how our analysis of the Nautilus
system was carried out in two major stages: architecture
extraction and scenario extraction (see Figure 2). In the sec-
ond stage, scenario extraction, which is central to this paper,
we relied on the knowledge gained during architecture ex-
traction. We used the Portable Bookshelf (PBS) toolkit [10]
to automate much of our analysis.

2.1 Architecture Extraction

In the first stage, architecture extraction, we followed
these steps, which are supported by the PBS toolkit:

(1) Fact Extraction. We used a C source code extrac-
tor calledcfx [10] to extract facts from Nautilus, such
as “file x.c defines functionf1 ” and “function f1
calls functionf2 ”. The extracted facts were stored in
a plain text file, which is referred to as afactbase.

(2) Fact Manipulation . We used a fact manipulator called
Grok [9, 10] to manipulate the extracted facts and the
containment facts, stored in ahierarchy file, to pro-
duce high-level facts, such as “subsystemP depends
on subsystemQ”. The hierarchy is a tree-structured
decomposition of Nautilus. As we understood more
about the organization of Nautilus, we modified the hi-
erarchy file to reflect such an understanding. So, the
hierarchy file is the starting point of iterations during
architecture extraction.

(3) PBS Visualization. We used the PBSlayouterto de-
termine the coordinates for each box so that the PBS

visualizercan display them on the screen [10]. Thevi-
sualizersupports manual layout manipulation, for ex-
ample, moving and resizing.

High−level facts

Hierarchy

Architectural
diagrams

Fact extraction

Source code,
documentation

PBS visualization

Scenarios

Scenario
diagrams

Fact preparation

matching
Scenario

modeling
Scenario

Extracted facts

Fact manipulation

Prepared facts

(b) Scenario Extraction(a) Architecture Extraction

Figure 2. Overview of analysis

Based on these analysis steps, we derived an architec-
tural view of Nautilus, whose highest level of abstraction
is shown in Figure 3. This level has five subsystems: (1)
the Windowsubsystem is responsible for normal file man-
agement and the strategy of linking and embedding views
dynamically; (2) theInitializer subsystem does the loading
and initialization of views at the request of the window; (3)
the Proxy subsystem maintains references to various view
components, forwarding the service request of the window
to views and reporting the status of views back to the win-
dow; (4) theViewssubsystem contains various view com-
ponents such asImage Viewer, Music View, andMozilla (a
wrapper application of the Mozilla web browser); and (5)
theLibrary subsystem contains the routines that are used to
develop views linkable to Nautilus and the routines that are
only used internally by Nautilus. The first four subsystems
are grouped in a dashed box, which has an arrow to the Li-
brary subsystem. This indicates that these four subsystems
all depend on the Library subsystem.

The architectural diagram in Figure 3 shows the modu-
lar organization of Nautilus, but it does not reveal the sys-
tem’s dependency on the underlying CORBA technology.
To understand the dependency of Nautilus on CORBA, we
extracted a set of scenarios involving CORBA.



Window Views

Initializer

Proxy

Library

depends on message Subsystem Virtual subsystemLegend:

Figure 3. Software architecture of Nautilus

2.2 Scenario Extraction

This section will explain our process, illustrated in Fig-
ure 2(b), for extracting scenarios. Before discussing each
analysis step, we first describe layered communication in
Nautilus.

The layered structure in Figure 4 shares the same style
as the Open System Interconnection (OSI) reference model
for network communications [8], but it has less layers. The
top layer is theWindow-Viewlayer, containing the Nautilus
window application and various view components. The
middle layer is theProxy layer, containing the view proxy
and the window proxy. The proxy layer relays routine calls
from the Window-View layer to the CORBA layer and mes-
sages from the CORBA layer to the Window-View layer.
The bottom layer is CORBA, which does the low-level com-
munication between the proxies. In fact, we conjectured
this layered communication architecture based on our un-
derstanding of Nautilus from the first stage. We needed a
method to validate it.

The directions of the two paths in Figure 4 imply two
communication scenarios:

Window to view scenario: The window invokes
function calls on the view proxy. Then, the view
proxy translates these calls to CORBA calls to the
window proxy which sends a set of messages to
the actual view component.

View to window scenario: A view component
invokes function calls on the window proxy.
Then, the window proxy translates these calls to
CORBA calls to the view proxy which sends a set
of messages to the window.

The objective of our analysis was to extract these two
scenarios and to use them as a means to validate the layered
communication architecture. Also, we hoped to produce a

Window View

View Proxy Window Proxy

CORBA

Legend: funcCall corbaCall message

Figure 4. Layered Communication in Nautilus

set of scenario diagrams as enhanced versions of the archi-
tectural diagrams of Nautilus (e.g., Figure 3 and Figure 4).
During the extraction, we followed three steps:

(1) Fact Preparation. We used scripts to extract message
and corbaCall facts (see Figure 4), which were
not produced automatically by our fact extractor (cfx).
These new facts, with the facts extracted by cfx and
the facts stored in the containment hierarchy, were pre-
pared for scenario extraction and merged into a new
factbase.

(2) Scenario Matching. We applied graph patterns to de-
scribe those two communication scenarios. Then, we
used Grok, which was extended to support graph pat-
tern matching, to extract these scenarios from the pre-
pared factbase.

(3) Scenario Modeling. We produced a set of diagrams
by applying UML interaction diagrams [5] to model
the scenarios extracted at the previous step. We chose
collaboration diagrams instead of sequence diagrams
as the modeling method. The reason for our choice
will be explained in Section 5.

Before discussing these three steps in detail, we explain
how Grok is used for pattern matching in the second step of
scenario extraction.

3 Enhancing Grok with Graph Patterns

Grok is a relational calculator that supports a scripting
language [10]. In the PBS toolkit, Grok is used to manip-
ulate code-level facts to produce architectural abstractions
and aggregations by way of algebraic calculations [9]. We
have extended Grok to have graph patterns to match struc-
tures (graphs) in factbases.



v3v2

f1 f2 f3

f5 f6

c2

f4

c1

v1

f1 f2 f3

f5 f6

c2

f4

c1

useVarfuncCall

�
�
�
�

(b) Matched subgraphs(a) Factbase in graph

Legend: funcDefvarDef

Figure 5. Matching graph patterns within a
graph, which represents a factbase.

3.1 Example Factbase

We will start with an example factbase to illustrate how
we store facts about programs. In this factbase, facts
are represented as ASCII triples in Rigi Standard Form
(RSF) [12]. For example, in the following RSF triples,
funcDef c1 f1 means that classc1 defines function
f1 , and funcCall f1 f2 means that functionf1 calls
function f2 . The following factbase can be considered the
typed graph shown in Figure 5(a).

varDef c1 v1
varDef c2 v2
varDef c2 v3
funcDef c1 f1
funcDef c1 f2
funcDef c1 f3
funcDef c2 f4
funcDef c2 f5
funcDef c2 f6
useVar f1 v1
useVar f5 v2
useVar f5 v3
funcCall f1 f2
funcCall f2 f3
funcCall f4 f5
funcCall f5 f6
funcCall f2 f4

3.2 Graph Patterns

Given a factbase extracted from a source program, we
can define a graph pattern to model a particular structure oc-
curring in the factbase, for example, a path, a cycle, or, more
generally, a subgraph. In general, the match of a graph pat-
tern is a set of subgraphs, each representing an occurrence
of that pattern.

In Grok, a graph pattern is defined by a set of pattern
variables and a set of constraints (rules) to be applied to
those pattern variables. We can think of pattern variable
as abstract graph nodes, and pattern rule as abstract graph
edges or abstract graph attributes. Thus, a graph pattern is
essentially an abstract graph. Grok requires that a properly
defined graph pattern must be a connected graph.

We now explain how to match an example structure de-
scribed as follows:

Within a class C, function F calls function G, and
function G calls function H.

This structure can be modeled as a graph pattern using the
following Grok script:

pattern1 := {funcDef C F;
funcDef C G;
funcDef C H;
funcCall F G;
funcCall G H}

The definition ofpattern1 is composed of five pat-
tern rules, which are expressed as RSF triples. When being
used to define a graph pattern, each RSF pattern rule implic-
itly declares two pattern variables. For example, the rule
funcCall F G declares two pattern variables,F and
G, which must have a relationfuncCall between them.
When pattern1 is applied to the graph in Figure 5(a),
it matches the two subgraphs in Figure 5(b). The match
of pattern1 will be stored in a n-ary relation where the
column names are actually pattern variables (see Table 1).
Each row in the table corresponds to a matched subgraph in
Figure 5(b).

C F G H
c1 f1 f2 f3
c2 f4 f5 f6

Table 1. Match of Pattern1

We can reuse a pattern match by expanding it with new
pattern rules. For example,pattern2 matches subgraphs
from Table 1, in which functionGuses a variableV declared
in the same class asG.

Pattern2 := {Pattern1:
useVar G V;
varDef C V}

The match is shown in Table 2.

C F G H V
c2 f4 f5 f6 v2
c2 f4 f5 f6 v3

Table 2. Match of Pattern2



We can apply constraints to select a subset of the
matched instances of a pattern. For example, we may want
to select those pattern instances, in which the name of func-
tion Gmatches the regular expression “f.* ” and the name
of variableV must be “v2 ”. The match is shown in Table 3.

Pattern3 := {Pattern2:
(G like "f.*") and
(V equal "v2")}

C F G H V
c2 f4 f5 f6 v2

Table 3. Match of Pattern3

Since scenarios capture the interactions among a set of
components, we can use graph patterns to model such in-
teractions and to extract the scenarios as subgraphs from a
factbase extracted from a source program.

4 Scenario Extraction

In this section, we give a detailed description of the
three steps of scenario extraction (fact preparation, scenario
matching, and scenario modeling). We will show our expe-
rience of using graph patterns to extract scenarios.

4.1 Fact Preparation

In Section 2.2, we identified two communication scenar-
ios: one goes from the window to the view, and the other
takes the reverse direction (see Figure 4). In either direc-
tion, the communication passes through the two proxies.
As can be seen in Figure 4, three relations are involved:
funcCall , corbaCall , and message . Our fact ex-
tractor (cfx) producedfuncCall facts automatically, but
it does not generate facts forcorbaCall andmessage .
We had to prepare these last two before starting scenario
extraction.

To preparemessage facts, we studied the implementa-
tion of the view and window proxies. We found that both
proxies use the signal routinegtk_signal_emit pro-
vided by the GTK+ Signal [11] to send a message. Figure 6
illustrates the role GTKSignal plays in the window-to-view
communication. We usedgrep to locate the occurrences of
gtk_signal_emit from the Nautilus source code and
createdmessage facts by scripting. For example, a mes-
sage fact may look likemessage gtk_signal_emit
music_view_load_location_callback . This
fact means that the GTKSignal signals the music view to
load a location (e.g., a file directory of songs).

To preparecorbaCall facts, we relied on the CORBA
naming convention specified by GNOME. The relation
corbaCall represents the mapping from CORBA stub

CORBA

request service

idl_stub idl_skel

funcCall corbaCall message functionLegend:

relay

Window

View Proxy

View

Window Proxy

emitter

idl_impl

GTK_Signal

Figure 6. Window-to-view communication

routines to their corresponding skeleton routines. Accord-
ing to the CORBA naming, if we prefix a stub routine
(e.g.,report ) with ORBIT skel , we will get its skele-
ton routine (e.g.,_ORBIT_skel_report ). Correspond-
ingly, these two routines together form acorbaCall fact,
corbaCall report ORBIT skel report . Using
Grok scripts, we prepared all thecorbaCall facts.

After preparing themessage andcorbaCall facts,
we merged them with the facts extracted by cfx and the
facts stored in the containment hierarchy into a new fact-
base. We also simplified this factbase by abstracting many
minor details inside subsystems.

4.2 Scenario Matching

Given the prepared factbase from Nautilus, we were
ready to apply graph patterns to extract the communica-
tion scenarios for Nautilus. Along the path from the win-
dow to the view is a chain of six relations:funcCall ,
funcCall , corbaCall , funcCall , funcCall , and
message (see Figure 6). A similar chain exists for the
view-to-window scenario. To define a pattern for this chain
of six relations, we used seven pattern variables:request ,
relay , idl_stub , idl_skel , idl_impl , emitter ,
andservice , as illustrated in Figure 6. In this case, each
pattern variable represents a function. Using Grok, we spec-
ified this chain as thescenarioChain pattern.

% Scenario chain in either direction
scenarioChain := {

funcCall request relay;
funcCall relay idl_stub;
corbaCall idl_stub idl_skel;
funcCall idl_skel idl_impl;
funcCall idl_impl emitter;
message emitter service

}



The match ofscenarioChain contains both classes
of communication scenarios, either window-to-view or
view-to-window. To select the scenarios in each direction,
we used a small set of CORBA stub routines as the selection
standard. For the window-to-view scenarios, the view proxy
has access to five stub routines. For the view-to-window
scenarios, the window proxy has access to ten stub routines,
but only four of them are shown in the following scripts.
Also, the signal emitter must begtk signal emit .

% The set of stubs used by view proxy.
viewStubs := {

"Nautilus_View_stop_loading",
"Nautilus_View_load_location",
"Nautilus_View_title_changed",
"Nautilus_View_history_changed",
"Nautilus_View_selection_changed"

}

% The set of stubs used by window proxy.
windowStubs := {

"Nautilus_ViewFrame_report_load_underway",
"Nautilus_ViewFrame_report_load_compplete",
"Nautilus_ViewFrame_report_load_failed",
"Nautilus_ViewFrame_set_title",
...

}

% Pattern for window-to-view scenarios
windowToView := {scenarioChain:

(idl_stub in viewStubs) and
(emitter equal "gtk_signal_emit")

}

% Pattern for view-to-window scenarios
viewToWindow := {scenarioChain:

(idl_stub in windowStubs) and
(emitter equal "gtk_signal_emit")

}

Sets and patterns were used to extract all the scenarios
defined bywindowToView andviewToWindow . These
extracted scenarios are quite useful for explaining how the
Nautilus window collaborates with various views through
CORBA and validating the layered communication archi-
tecture of Nautilus. Due to size limitations, we choose to
show only three scenarios.

The scenarioload location is an instance of pattern
windowToView . Table 4 gives this match. It represents
a sequence of function calls going from the Nautilus win-
dow to the music view when a location change is made by
a Nautilus user.

Upon being signaled to load a new location, the mu-
sic view starts to inform the Nautilus window of the sta-
tus of its loading process. Two of the matched instances
of patternviewToWindow are found relevant to this load-
ing process:report load underway (see Table 5) and
report load complete (see Table 6).

The three scenarios in Tables 4-6 all use the func-
tion music_view_load_location_callback . We

looked at the source code of this function, and found that
nautilus_music_view_load_uri was called af-
ter nautilus_view_report_load_underway but
before nautilus_view_report_load_complete .
With this new information, we were able to construct a story
to connect all these three scenarios: (1) the Nautilus win-
dow notifies the music view to load a new location; (2) the
music view gets this notification and reports “load is un-
derway”; (3) the music view starts the actual loading and
reports “load is complete” after the loading is done.

load location (window-to-view)
variable matched function
request updateview
relay nautilusview frame load location
idl stub NautilusView load location
idl skel ORBIT skel NautilusView load location
idl impl impl NautilusView load location
emitter gtk signalemit
service musicview load locationcallback

Table 4. Scenario load location

report load underway (view-to-window)
variable matched function
request musicview load locationcallback
relay nautilusview report load underway
idl stub NautilusViewFramereport load underway
idl skel ORBIT skel NautilusViewFrame

report load underway
idl impl impl NautilusViewFrame

report load underway
emitter gtk signalemit
service load underway

Table 5. Scenario report load underway

report load complete(view-to-window)
variable matched function
request musicview load locationcallback
relay nautilusview report load complete
idl stub NautilusViewFramereport load complete
idl skel ORBIT skel NautilusViewFrame

report load complete
idl impl impl NautilusViewFrame

report load complete
emitter gtk signalemit
service load complete

Table 6. Scenario report load complete



4.3 Scenario Modeling

After the extraction of the communication scenarios
for Nautilus, we used UML collaboration diagrams [5] to
model them. The three collaboration diagrams in Figure 7
show their corresponding scenarios as annotations to the
layered communication architecture of Nautilus (see Fig-
ure 4). In each scenario diagram, numbers show the order
in which the interaction steps occur.

For a better understanding, we will take the scenario
load_location as an illustrative example and de-
scribe it in detail. A Nautilus user enters a location,
/home/eazel/Music/The Berlin Recitals, in the location bar
(see Figure 1). The Nautilus window catches this event, and
invokes a callupdate view on itself (step 1). A message
nautilus view frame load location is sent to
the view proxy (step 2), which then transforms the received
message toNautilus View load location (step 3)
and sends it through the underlying CORBA (step 4). The
window proxy receives the incoming message (step 5),
and then it invokes a callgtk signal emit on the
GTK Signal (step 6), which signals the music view to use
function music view load location callback to
load the new location,The Berlin Recitals(step 7). After
the completion of the callback function, a music view for
The Berlin Recitalsis displayed to the user.

The other two scenario diagrams in Figure 7 illustrate
the two view-to-window scenarios, which are caused by
music view load location callback . They are
straight forward, and we will omit the description of them
in this paper.

For each scenario that captures the communication flow
from the window to the view (e.g., Figure 7(a)), there must
be several response scenarios, which describe the com-
munication flow from the view back to the window (e.g.,
Figure 7(b) and Figure 7(c)). In both directions, only
a small set of interface routines (seeviewStubs and
windowStubs ) are used for communication. So, we can
extract a fairly small set of communication scenarios.

By modeling these extracted scenarios, we produced a
set of scenario diagrams, which are used as annotations for
Nautilus. These diagrams improved our understanding of
Nautilus by showing the interactions between the subsys-
tems of Nautilus and the support technology CORBA.

5 Discussion

Graph patterns provide software engineers with a flexi-
ble approach to explore the structural aspects of a software
system. One particular use of graph patterns is to extract
scenarios from the implementation of a software system, as
demonstrated in this paper.

:CORBA

:GTK_Signal

Music:View:Window

:View Proxy :Window Proxy

1: update_view

4: _ORBIT_skel_Nautilus_View_locad_location 

2: nautilus_view_frame_load_location

6: gtk_singal_emit

3: Nautilus_View_load_location

5: impl_Nautilus_View_load_location

7: music_view_load_location_callback

(a) Scenario loadlocation

:Window

:CORBA

:View Proxy

:GTK_Signal

Music:View

:Window Proxy

1: nautilus_view_report_load_underway

2: Nautilus_ViewFrame_report_load_underway

3: _ORBIT_skel_Nautilus_ViewFrame_load_underway

4: impl_Nautilus_ViewFrame_

5: gtk_singal_emit

6: load_underway

report_load_underway

(b) Scenario reportload underway

:Window

:CORBA

:View Proxy

Music:View

:GTK_Signal

:Window Proxy

1: nautilus_music_load_uri

2: nautilus_view_report_load_complete

3: Nautilus_ViewFrame_report_load_complete

4: _ORBIT_skel_Nautilus_ViewFrame_load_complete

5: impl_Nautilus_ViewFrame_
report_load_complete

6: gtk_singal_emit

7: load_complete

(c) Scenario reportload complete

Figure 7. Modeling communication scenarios



By extending Grok for graph pattern matching, we are
able to investigate many different kinds of structural in-
teractions in a software system (involving function calls,
event interactions, etc.) within the PBS architecture recov-
ery framework. This is not meant to imply that Grok, as
extended, is the only means for extracting scenarios by way
of graph patterns. There are other approaches, for example,
SQL queries and Prolog unification.

5.1 SQL Queries

We could have used Structured Query Language (SQL)
instead of Grok to match graph patterns. This is because
that facts extracted from a source program can be stored
in a relational database, and because Grok’s graph pattern
rules can be translated to SQL query statements. Why did
we choose to develop our own tool for extracting scenarios
with graph patterns? There are three reasons:

1. Graph patterns are more intuitive for specifying graph-
like structures, whereas SQL is designed for table-
oriented computations.

2. Plain text files and semi-structured files are used exten-
sively during the pipelined analysis supported by PBS.
It is desirable to have a tool to work on those files di-
rectly rather than submit queries to a database.

3. Grok has powerful support for algebraic operations. It
only took us a small amount of time to extend Grok for
graph pattern matching through the reuse of the alge-
braic operations inside Grok.

5.2 Prolog Unification

Prolog is a powerful programming language used for
solving problems that involve objects and relationships be-
tween objects [13]. In Prolog, the process of matching
graph patterns is referred to asunification. For example,
thepattern1 described in Section 3 can be expressed in
a Prolog clause as follows:

pattern1(C, F, G, H) :-
funcDef(C, F),
funcDef(C, G),
funcDef(C, H),
funcCall(F, G),
funcCall(G, H).

The graph patterns expressed in Grok are quite similar
to those in Prolog. The main difference is that the syntax
of graph patterns in Grok is more consistent with the data
formats supported by the PBS toolkit: RSF and TA [10].
Our goal was to make graph pattern matching an integral
part of Grok, and we were able to achieve this by extend-
ing the Grok language with algebraic operations or Prolog
unification [14, 15].

5.3 Lessons Learned

In our analysis of Nautilus, we extracted (usingcfx) and
prepared (using scripts) a factbase for Nautilus based on the
static analysis of source code. Though this factbase con-
tained no runtime facts about the dynamic behavior of Nau-
tilus, it was quite useful for understanding the layered com-
munication architecture of Nautilus by extracting scenarios.

Driven by the need to understand a software system, a
software engineer may choose different extraction meth-
ods, either static methods (e.g., parsing and scripting) or
dynamic methods (e.g. debugging and profiling). Runtime
facts extracted during code execution can be used to validate
the ordering of interactions in a scenario that is extracted
using graph patterns. On the other hand, facts extracted in
static scenario analysis can provide useful guidelines for dy-
namic extraction.

One of the troubles we had with Nautilus was identify-
ing a useful set of scenarios, because substantial knowledge
about the important tasks of the system were required. Our
experience showed that such knowledge could be accumu-
lated during architecture extraction. In our analysis, the
trial-and-error method was applied to extract useful sce-
narios. We carried out many iterations of defining patterns
before we got useful matches.

After we extracted a set of useful scenarios, we chose
to model them using UML collaboration diagrams, instead
of sequence diagrams. This is because a collaboration di-
agram (e.g., Figure 7(a)) can have a direct layout mapping
to a software architecture (e.g., Figure 4). Scenarios can be
used as annotations for software architectures, augmenting
programmers’ understanding of a software system. Many
difficulties we had in understanding Nautilus’s architecture
were mitigated by the extraction of useful scenarios. For ex-
ample, we found that the initialization of view components
exposed a similar mechanism as the one shown in Figure 4.

6 Related Work

To our knowledge, no previous work has been done to
extract scenarios using graph patterns, but a variety of stud-
ies [16, 17, 18, 19, 20] are closely related to our work.

Guo, Kazmanet al. applied SQL queries to extract struc-
tural patterns [16]. In their approach, the facts extracted
from a source program are stored in a relation database, and
a pattern recognition plan is developed as a set of SQL query
statements. They focused on recovering design patterns em-
ployed in the implementation of a software system, for ex-
ample, the Presentation Abstraction Control (PAC) pattern.
Their method for describing a recognition plan is quite sim-
ilar to the way we define a graph pattern. To carry out a
pattern recognition plan, they need to translate it into SQL
queries.



Jerdinget al. used code instrumentation to extract the
call trace from the execution of a program [17, 18]. Their
pattern recognition algorithm is based on substring match-
ing heuristics, which can be used to locate interesting exe-
cution scenarios from voluminous trace information. They
also developed a prototype visualizer to model execution
scenarios using a variation of Message Sequence Charts.

In [19], Sysẗa used a debugging tool to trace runtime
events during the execution of object-oriented programs. A
large amount of event trace information was produced and
then reduced to a reasonable amount by a CASE tool for
extracting behavioral patterns. In her approach, behavioral
patterns can be extracted using a string-based matching al-
gorithm.

Pal described a technique of lifting low-level call se-
quences to illustrate dynamic interactions at the component
level [20]. He first chose a set of scenarios. Then, for each
of these scenarios, he usedgdb to trace call sequences by
defining breakpoints during debugging. The traced call se-
quences were abstracted up to the component level.

7 Conclusions

We presented an approach to extracting scenarios based
on static information recovered from the source code of a
software system. The approach requires no modifications
of the source code and doesn’t require profiling the exe-
cutable. The approach is semi-automated. Graph patterns
are used to describe the interactions between the compo-
nents and a relational calculator is used to locate the match-
ing patterns in the source code of the software system. We
have shown through the Nautilus case study that scenario
extraction was useful for improving a programmer’s under-
standing of a software system’s architecture.

References

[1] G. C. Murphy, D. Notkin and K. Sullivan. Software Reflex-
ion Models: Bridging the Gap between Source and High-
Level Models. InProc. of the 3rd ACM Symposium on the
Foundations of Software Engineering, pp. 18-28, Washing-
ton, D.C., October 1995.

[2] I. T. Bowman, R. C. Holt and N. V. Brewster. Linux as a
Case Study: It Extracted Software Architecture. InProc. of
the 21st International Conference on Software Engineering,
Los Angeles, California, May 1999.

[3] R. Kazman, G. Abowd, L. Bass and P. Clements. Scenario-
Based Analysis of Software Architectur.IEEE Software,
13(6):47–55, 1996.

[4] P. Kruchten. The “4+1” View Model of Architecture.IEEE
Software, 12(6):42–50, November 1995.

[5] M. Fowler and K. Scott.UML Distilled: A Brief Guide to
the Standard Object Modeling Language. Addison-Wesley,
2000.

[6] Nautilus. http://nautilus.eazel.com, June 2001.

[7] GNOME. http://www.gnome.org, January 2002.

[8] H. Zimmermann. OSI Reference Model – the ISO Model
of Architecture for Open Systems Interconnection.IEEE
Transactions on Communications, 28(4):425–432, April
1980

[9] R. C. Holt. Software Architecture Abstraction and Aggrega-
tion as Algebraic Manipulations. InProc. of CASCON’99,
Toronto, Canada, November 1999.

[10] The Portble Bookshelf. http://www.swag.uwaterloo.ca/pbs,
September 2001.

[11] The GTK+ Online Reference. http://www.gtk.org, January
2002.

[12] H. Müller, O. Mehmet, S. Tilley and J. Uhl. A Reverse En-
gineering Approach to Subsystem Structure Identification.
Journal of Software Maintenance: Research and Practice,
Vol. 5(4), pp. 181–204, December 1993.

[13] W. F. Clocksin and C. S. Mellish.Programming in Prolog,
4th edition. Springer-Verlag, 1994.

[14] GNU Prolog, version 1.2.8. http://pauillac.inria.fr/ diaz/gnu-
prolog, October 2001.

[15] XPCE/SWI Prolog, version 5. http://www.swi-prolog.org,
April 2002.

[16] G. Y. Guo, J. M. Atlee and R. Kazman. A Software Ar-
chitecture Reconstruction Method. InProc. of the 1st IFIP
Working Conference on Software Architecture, pp. 15–33,
San Antonio, Texas, February 1999.

[17] D. Jerding, J. Stasko and T. Ball. Visualizing Interactions
in Program Executions. InProc. of ICSE’97, pp.360–370,
Boston, Massachusetts, May 1997.

[18] D. Jerding and S. Rugaber. Using Visualizatin for Architec-
tural Localization and Extraction. InProc. of the 4th WCRE,
pp.56–65, Amsterdam, Netherland, October 1997.

[19] T. Sysẗa. Understanding the Behavior of Java Programs.
In Proc. of the 7th WCRE, Brisbane, Australia, November
2000.

[20] C. Pal. A Technique for Illustrating Dynamic Component
Level Interactions Within a Software Architecture. InProc.
of CASCON’98, pp. 134–146, Toronto, Canada, November
1998.


