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Abstract—Does geographic distance affect distributed software
development teams? Researchers have been mining software
artifacts to find evidence that geographic distance between
software team members introduces delay in communication and
deliverables. While some studies found that geographical distance
negatively impacts software teams, other studies dispute this
finding. It has been speculated that various confounding factors
are the reason for the contradicting findings. For example, newer
tools and practices that enable team members to communicate
and collaborate more effectively, might have negated the effects
of distance in some studies.

In this study, we examine an alternate theory to explain the
contradicting findings: the different aggregations of the software
artifacts used in past studies. We call this type of bias: the
aggregation bias. We replicated the previous studies on detecting
the evidence of delay in communication using the data from
a large commercial distributed software project. We use two
different levels of artifacts in this study: the class files and
the components that are the aggregation of the class files. Our
results show that the effect of distance does appear in low level
artifacts. However, the effect does not appear in the aggregated
artifacts. Since mining software artifacts has became a popular
methodology to conduct research in software engineering, the
result calls for careful attention in the use of aggregating artifacts
in software studies.

I. INTRODUCTION
Global software engineering brings many benefits to soft-

ware companies [1], [2], [3]. Being close to the customers
while maintaining access to cheap and skilled global labour
markets gives large software companies a competitive advan-
tage while maintaining the same level of service to customers.

However, distributed global software engineering poses new
problems compared to a traditional collocated setting [1],
[3], [4]. Surveys of distributed teams reveal difficulties due
to the geographic distance such as delay in communication,
coordination breakdowns, and personnel conflicts due to cul-
tural differences. These challenges threaten to reduce or even
overrun the benefits of distributed development.

The quest to find empirical evidence of the effect of distance
on software artifacts, however, has yielded conflicting findings.
Various research teams [5], [6], [7], [8], [9] reported that
distributed development has a negative impact on productivity.
On the other hand, other teams [10], [11], [12] found that the

effect of distance is negligible. One possible explanation is that
different companies have different strategies [13] to mitigate
the effect of distance.

However, in recent years, many studies have been examining
the existence of various types of bias [14], [15], [16], [17],
[18], [19], [20], [21], [22] in software artifacts that can cause
contradicting findings in empirical studies. We suspect that a
particular kind of bias, aggregation bias [23], is the cause of
the contradicting findings on the distance effect. Aggregation
bias happens when one evaluates the same hypothesis using a
particular software artifact (e.g., Java classes) and the aggre-
gation of those artifacts (e.g., Java packages), and the findings
contradict. Empirical evidence of aggregation bias is reported
in many studies [17], [19], [20], [21].

In this paper, we conduct a case study on a large-scale dis-
tributed commercial software project: IBM Rational’s JazzTM1.
We explore if aggregation bias is a potential cause of the
contradicting findings on the distance effect by analyzing the
evidence of the distance effect on two different artifact levels:
components and source files. We find that:

• Distance has an impact on productivity when studied at
the file level. Distributed source files take longer to patch
and contain more defects even when the effect of the
confounding factors are controlled.

• Distance has a negligible impact on productivity when
studied at the component level. There is a difference
in defect count between distributed and collocated com-
ponents. However, when we factor in the confounding
factors, the difference disappears.

The result shows that aggregation bias is indeed a potential
cause for the contradicting findings in literature on the distance
effect. Thus, researchers should always explore and test their
hypotheses on different levels of software artifacts explicitly.

The structure of this paper is as follows. In the next section,
we discuss the conflicting findings of prior research, which
explored the effect of distance in distributed development.

1http://www.jazz.net. IBM and Jazz are trademarks of IBM Corporation in
the US, other countries, or both.



TABLE I
PAST STUDIES ON THE DISTANCE EFFECT

Study Artifacts used Target of The distance
investigation effect

[8] Change request
(Task or Defect)

Delay in commu-
nication

Distributed ⇒
longer to fix

[11] Change request
(Task or Defect)

Delay in commu-
nication

Negligible effect

[10] Component
(DLL)

Number of de-
fects

Negligible effect

[5], [6],
[7]

Projects Number of de-
fects

Distributed ⇒
more defects

[12] Source code (File
level)

Number of de-
fects

Negligible effect

[9] Change request
(Task or Defect)

Delay in commu-
nication, chance
of reciprocation

Mixed

We also introduce the research questions used to structure
our analyses. Section III presents our data collection method,
the constructs and the statistical techniques used in this study.
Section IV and Section V present the results of each research
question. We discuss our results in Section VI. We conclude
in Section VIII.

II. RELATED WORK AND MOTIVATION

In this section, we introduce related work on the effect of
distance in distributed software teams. We also explain the
different levels of artifacts often used in previous studies.

A. Prior research on the effect of distance in global software
engineering projects

The effect of distance in distributed software teams, which
we will call “the distance effect” for short in this paper, has
been studied extensively. Experiments in the laboratory have
found that even though technologies have enabled workers
to collaborate remotely, the effectiveness compared to collo-
cated workspaces is questionable [24]. Empirical studies of
distributed software teams have explored difficulties of such
workplaces. Battin et al. [1] report that distributed teams
at Motorola suffer from loss of communication richness,
coordination breakdown, and geographic dispersion. A survey
of distributed software teams at Lucent Technologies showed
that there are perceived difficulties in communication when
it comes to distributed development [8]. Hinds et al. [25]
found that distributed teams report more conflicts. Studies
with large datasets have identified different factors such as
time-zone differences [26], personal imbalance, or differences
in experience [27] that affect productivity and quality of
distributed teams.

However, the quest to find hard evidence through analyses
of software artifacts has yielded contradicting findings. We
summarize the past studies on the distance effect in Table I.
For each study, we show the reference to the paper, the artifacts
used in the study, and the findings. Herbsleb et. al. [8] found
that the distance effect increases the delay in communication.
However, our past case study [11] on another software project
finds that the effect is very small. Bird et. al. [10] found that
the number of defects does not change with the increased
distance. Cataldo et. al. [5], [6], [7], on the other hand, found
the opposite. Wagstrom and Datta [9] study the communication

speed and reciprocality in a large distributed team. They found
that geographic distance has no effect on both factors but the
time zone difference has an impact on communication speed.

There are many possible explanations for the conflicting
findings. One possibility is that companies have different
strategies [13] to mitigate the effect of distance. For example,
Herbsleb et. al. [8] and Nguyen et. al. [11] studied delay
in task completion and communication at Lucent and IBM
Jazz about five years apart from each other. It is possible
that the Jazz project was able to cope with the geographic
separation because of new awareness and new strategies for
global software engineering.

However, we suspect that the different levels of software
artifacts used in these studies might also play a role. We can
observe from Table I that each past study focuses on a single
level of artifacts. The authors probably looked at the most
natural and available level for their studies. Herbsleb et. al. [8]
and Nguyen et. al. [11] used change requests. Bird et. al. [10]
and Cataldo et. al. [5], [6], [7] used software components or
software projects. Spinellis [12] analyzed files.
B. Aggregation bias

Figure 1 shows a conceptual diagram of a typical study that
uses software artifacts. On the left side, we have the subject of
study, in which the researchers are interested. For example, we
studied the use of call dependencies on defect prediction [19].
In the middle are the artifacts that researchers collect. On
the right side are the possible conclusions of the analysis.
For example, we tried to find the effect of dependencies on
defects in subcomponents. We found that using dependencies
to predict defects has no potential benefit. From this, we might
prematurely conclude that dependencies should not be used.

As shown in the middle of Figure 1, there are many levels
of artifacts. The lowest level in our example is the source
file such as Java or C++ source and header files. The higher
levels are aggregation of the lower layers. The next level
in our example are the subcomponents. For example, the
JDT has Java packages that correspond to the Java editor
or the debugger. The top level is the software project, which
usually corresponds to a software product such as the Eclipse
project2. A software project usually contains components.
Each component is an aggregation of subcomponents, e.g.,
Java packages. For example, Eclipse consists of the Platform
core, the Java development tools (JDT), the Plug-in Develop-
ment Environment (PDE), and others. The levels in Figure 1
are only an example. Source files can be thought as aggrega-
tions of methods. Methods can be thought as aggregations of
statements. The distinction depends on the software projects
and/or the interpretation of the researchers.

Studies usually use one level of artifact implicitly. For
example, Zimmermann et. al. [28] studied the benefits of using
dependency structure in defect prediction at the component
level. They found that dependencies improve the prediction.
The implicit assumption here is that the study findings should
be reflected equally at all levels of artifacts.

2The Eclipse Foundation: http://www.eclipse.org
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Fig. 1. A simplified view of studies that use software artifacts.

However, researchers have been showing evidences of var-
ious types of bias in software artifacts that can cause contra-
dicting findings in studies: erroneous tags [14], [18], missing
links [16], [18], [22], incompleteness [15], or aggregation
bias [17], [19], [20], [21]. We suspect that a particular kind
of bias, which we call aggregation bias, is the cause of the
contradicting findings on the distance effect. Aggregation bias
happens when one evaluates the same hypothesis using a
software artifact (e.g., Java classes) and aggregation of those
artifacts (e.g., Java packages), and the findings contradict.
Empirical evidence of aggregation bias is reported in many
studies [17], [19], [20], [21].

In our previous study, we came across evidence of aggrega-
tion bias in defect prediction. We replicated Zimmermann et.
al.’s study on using social network analysis metrics to predict
defects [28]. Our replication study [19] used two levels of
artifacts. We found that the original findings hold at the file
level (path 1 on Figure 1) but not at the subcomponent level
(path 2 on Figure 1). Kamei et. al. [17] also found the same
contradicting findings at Java file and package levels using
other metrics for defect prediction. Posnett et. al. [20], [21]
found that, in defect prediction, analyzing different level of
artifacts yield different findings. More recent results on defect
prediction also found different accuracies on different level of
artifacts [29].
C. Research Questions

Similar to defect prediction, it is possible that the different
levels of artifacts are also the reason why we see conflicting
findings on the distance effect. Hence, in this study, we study
the distance effect in one global software project at two
different levels of artifact: source files and components. If
the distance effect exists at both levels, we can confirm the
findings of Herbsleb et. al. [8] and Cataldo et al. [5], [6], [7].
If the distance effect does not exist at neither levels, we can
confirm the findings of our previous study [11] and Bird et.
al. [10]’s. If the distance effect exists at one level but not at
the other, the conflicting evidence is probably caused by the
different levels of artifacts.

To guide our research, we address the following research
questions:

• RQ1: Does the distance effect exist at the source file
level?

• RQ2: Does the distance effect exist at the component
level?

We answer these research questions in Section IV and
Section V, respectively.

III. METHODOLOGY

This section discusses our data collection technique. We will
also introduce the research constructs for distance and quality.
Finally, we explain the statistical analyses that we will use.
A. Data Collection

In order to study the distance effect, we need to study a large
distributed development project. We choose IBM Rational’s
Jazz project. The Jazz project aims to build a development
environment that tightly integrates programming, communi-
cation, and project management. The project development
involves about 200 project members on 16 different sites that
are located in the USA, Canada, and Europe. The team follows
an agile development methodology. Each iteration takes about
8-12 weeks and may result in one or two deliveries, either in
the middle and/or at the end of the iteration. We have access
to data of five iterations, which span about 14 months from
2007 to 2008.

What is unique about the Jazz project is that the project
maintains a very clean repository of artifacts, since it is also the
team’s product. The artifacts are linked properly, i.e., we can
connect developers, whose work locations are known, to the
files they modified. All the artifacts are also marked properly.
Hence, we can distinguish if a code change is a bug fix or
an enhancement. We may be able to use heuristics to mine
the same information from open-source projects. However, the
errors of the heuristics might introduce linkage biases [16],
[18], which we want to avoid in this study.

There are 47,669 work items in the repository. We perform
three filtering steps to eliminate invalid artifacts from our
study. First, we remove work items that were not resolved
by a change to the code. A large part of these work items are
the result of migrating from a legacy system where the system
was developed initially. Second, we remove all the non-source



related files such as machine generated, build, or configuration
files. Third, there are cases when a developer has to fix a defect
he/she found, but for which no work item exists yet. Typically,
he/she would perform the fix first. Then he/she creates a work
item for it. Otherwise, he/she cannot check in the code. In
that case, the resolution time of the work item does not reflect
the actual resolution time of the defect. It will only be a few
minutes. So, we exclude these work items from our analysis
by removing work items that (a) have only one contributor,
i.e., authors, subscribers, or commenters; and (b) are closed
within one hour. After these three steps, we have 15,924 work
items that are valid for our study.

The cleaned data contains 21,434 source files in 88 com-
ponents. We divide the artifacts into two categories [30]:
distributed and collocated. At the file level, the categories
are determined by the number of separate work sites, from
which team members have modified the file across time. If
the contributors of a file are from more than one site, the
file is a distributed source file. If all contributors are from
the same location, it is a collocated file. There are 1,856
distributed files and 19,578 collocated files. We use a similar
classification for components. The number of distributed and
collocated components are 31 and 57 respectively.

B. Measures of Software Productivity and Quality

Our goal is to determine the effect of distance using
software artifacts. As in previous studies [10], [5], [6], [7], [8],
[31], [28], we define the following two constructs as measures
of software productivity and quality: resolution time and defect
count.

1) Resolution time: The resolution time is the time to fix
a defect or to implement an enhancement. When a defect
is discovered or an enhancement is planned, a work item
is created. When the defect is fixed or the enhancement
is implemented, the work item will be closed. Similar to
Herbsleb et. al. [8], we take the difference between the two
timestamps as the resolution time. Following the ITLT V3
standard [32], the resolution time of a component is calculated
as the average resolution time of all defects and enhancements
in that component. The resolution time of a source file is the
average resolution time of all defects and enhancements that
modified the source file. The smaller the resolution time, the
more defects and enhancements can be completed in a shorter
time, thus, the higher the productivity. We note that the studied
work items were worked on and completed within the studied
five milestones. Since, unlike other datasets, the work items
only rarely are de-prioritized and moved from one iteration
to another, the resolution time is a good estimate of the time
required to complete the work item.

2) Defect count: The defect count of a source file or a
component is the number of defects that is associated with
the file or the component. We only count the number of
work items, associated with the artifacts, that are marked as a
defect. The higher the count, the more defect-prone the file or
component is. Software quality studies usually use the defect
count as construct for software quality [31], [28]. Bird et.

al. [10] and Cataldo et. al. [5], [6], [7] used defect count on
software components in their studies on the distance effect.

C. Confounding factors

To study the existence of the distance effect, we compare the
aforementioned measures between distributed and collocated
artifacts. However, the cause of the differences may not be the
distance. It is possible that distributed or collocated artifacts
share a common property that makes them harder to patch
and more prone to defects. If this is the case, the relationship
between distance and software productivity and quality is just
spurious. Thus we have to eliminate plausible confounding
factors.

Based on prior research [33], [34], [35], [10], we identify
three possible confounding factors: the number of changes,
the code size, and the team size. Change typically introduces
new bugs [33], [34]. Perhaps distributed or collocated artifacts
are changed more often than the other. Furthermore, the
larger the files, the higher the number of lines of code they
contain. If defect density is distributed evenly per lines of
code, then larger artifacts are more prone to defects [35].
Finally, components developed by a larger team are more
subjective to defects [10] since the more developers, the higher
the possibility of defect occurrences, independent of whether
or not they are distributed.

D. Statistical Analyses

Table II summarizes the statistical analyses that we use to
answer RQ1 and RQ2. There are two levels of artifacts: source
file and component. For each level, we perform: 1) a straight
comparison on the quality measures between distributed and
collocated artifacts; 2) comparison that is controlled for con-
founding factors, one at a time. The controlled comparison
will tell if the difference in the straight comparison is indeed
caused by the distance effect or by the confounding factor;
and 3) a multivariate analysis is used to validate the results of
the controlled comparisons, by controlling for all confounding
factors at once.

1) Comparison of distributions: To compare resolution
time and defect count between distributed and collocated
artifacts, we use box plots and the Mann-Whitney-Wilcoxon
(MWW) test [36].

Box plots are commonly used in exploratory data analysis.
The middle line of the plot represents the 50th percentile,
which is the median of all values. The box represents the
25th and the 75th percentile. The whiskers show the minimum
and the maximum observations, excluding outliers. We can
compare the quality measures between distributed and collo-
cated artifacts by comparing the box plot side by side. For
confidentiality reasons, we will not display the linear scale on
the y-axis. This, however, should not affect our result since
we are only interested in the comparison between distributed
and collocated artifacts.

Observations on the box plots alone can be deceiving.
Hence, we need a statistical test that can tell us if the difference
is statistically significant. Since both resolution time and defect



Number of locations
Number of changes

20%
22%0%
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Fig. 2. Example of a multivariate analysis. In a), most of the variance is
explained by the distance effect. The confounding factor, i.e., the number of
changes has only a small effect. So, the distance effect is the main factor. In
b), the confounding factor is the main factor.

counts are not normally distributed, we use the non-parametric
MWW test [36]. The null hypothesis of the MWW test is
that there is no difference between the two groups. We pick a
common level of significance of α = 0.05. If the test outputs
a p value smaller than 0.05, we reject the null hypothesis,
which means that there is most likely a significant difference
between the two groups.

2) Controlled comparisons: At each level of analysis, we
will first compare the distributed and collocated artifacts’
quality measures. If the difference is significant, we can
say that the distance effect exists. Then, for each possible
confounding factor, we perform a controlled comparison. We
apply equal frequency discretization on the confounding factor,
i.e., we divide the artifacts into equal-size classes according
to the confounding factor (e.g., the 50% classes with many
changes and 50% classes with few changes). Then, we com-
pare the difference of quality between the distributed and the
collocated artifacts within each class. This way, the effect of
the confounding factor is minimized. If the difference still
exists within the classes, we can say that distance has a major
effect on software productivity and quality. Otherwise, the
confounding factor plays a major role instead.

3) Multivariate Analysis: To confirm the results of the
comparisons by controlling for all confounding factors at once,
we use multivariate analysis. For this analysis, we build gener-
alized linear models (GLM) that predict the quality measures
using the distance measure and the confounding factors. For
each model, we add one factor after the other. At each state,
we compute the statistical deviance of the model from a
null model. The higher the deviance explained, the more the
model explains the variance in the quality constructs. Instead
of reporting the models’s results separately, which would be
hard to read, we create a visualization of all the models
together. Using the visualization, we can observe the increase
in deviance explained after each state to judge whether the
distance measure or one of the confounding factors contributes
the most to the variance in the quality construct.

Figure 2 shows two examples of the multivariate analysis

used in this study. Figure 2a is an example where the distance
effect is the main factor. Figure 2b is an example where the
confounding factor is the main factor. The graph is a summary
of all the models in the analysis. Each path from the first node
to the last node corresponds to a model. The nodes show the
deviance explained at each step of the construction. The first
node is the null model, so the deviance explained is 0%. The
last node is the full model when all the factors are used, so
the deviance explained is the maximum we can get from all
the factors (22%). The arrows show which factor is applied
at each step. For example, in the upper path, we first add the
distance measure (the solid red arrow), then the confounding
factor (the dashed black arrow). We do the opposite for the
lower path.

In Figure 2a, when we add the distance measure into the
model (on the upper path), the deviance explained (20%)
increases to almost the maximum (22%). Adding the con-
founding factor only increases by 2%. On the lower path, when
we add the confounding factor first, the deviance explained
only increases by 4%. The distance measure contributes to
the remaining deviance. Hence, for the example in Figure 2a,
the distance measure is the main contributor to variance in the
quality construct. Figure 2b shows the opposite situation when
the confounding factor is the main factor.

To construct the GLMs for resolution time, we first have to
determine the probability distribution and link function [37].
We try to fit both the resolution time and the defect counts
using different probability distributions, i.e., Binomial, Gaus-
sian, Inverse Gaussian, Poisson, and Gamma. As in Cataldo
et. al.’s study [6], we found that the Binomial distribution
fits best. To determine the link function, we build GLMs
using the Binomial distribution with different link functions,
i.e., logistic, normal, complementary log-log, and Cauchy.
We compute the Akaike information criterion (AIC) for each
GLM. The lower the AIC, the fitter the model [37]. The result
shows that the Cauchy link function works best.

For confidentiality reasons, we scale the maximum deviance
explained to 100% of the full model. For example, if the
deviance explained is 30% for the full model and 10% for an
intermediate state, we will display 100% and 33% respectively
on the graph. This scaling does not affect our result since we
are only interested in comparing the relative differences in the
deviance explained.

IV. RQ1: DOES THE DISTANCE EFFECT EXIST AT THE
SOURCE FILE LEVEL?

In this section, we determine if distance has an impact on
quality of source files by applying the analyses described in
Section III-D.

A. Comparing distributed and collocated files

Figure 3 shows the box plots of response time and defect
counts of distributed and collocated files. Figure 3a compares
the resolution time between distributed and collocated source
files for both defects and enhancements. We observe that the
box plot of the distributed source file is higher. This means



TABLE II
ANALYSES

Level Different
Analysis

Construct Description

Fi
le

Resolution time
and defect count

Distributed vs Collo-
cated

Comparison Resolution time Controlled for size
Controlled for change

Multivariate
Analysis

Resolution time Compare effect of
size, change, and
distance

C
om

po
ne

nt

Resolution time
and defect count

Distributed vs Collo-
cated

Comparison Defect count* Controlled for size
Controlled for number
of people

Multivariate
Analysis

Defect count* Compare effect of
size, people, and
distance

(*) The resolution time comparison is not statistically significant
so checking for confounding factors is not required.

Dist.
N=1856

Coll.
10926

a) Resolution Time
All, p=0.0000

Dist.
N=1618

Coll.
7439

b) Resolution Time
Defects, p=0.0000

Dist.
N=1510

Coll.
9731

c) Resolution Time
Enhance., p=0.0000

Dist.
N=1856

Coll.
10977

d) Defects
Count, p=0.0000

Fig. 3. Comparing the quality between distributed and collocated source
files. Resolution time is measured in hours. For confidentiality reasons, we
do not display the linear scale on the y-axis of the box plots.

that distributed source files take longer to patch. The MWW
test confirms that the difference is statistically significant
(p < 0.05). We print the p value at the top of each box
plot. Figure 3b compares the resolution time of only defects,
whereas Figure 3c compares the resolution time of only en-
hancements. In both cases, distributed source files take longer
to patch. The difference is clearer for defects compared to the
enhancements. Similarly, Figure 3d shows that distributed files
usually contain more defects than collocated files do. We note
that the number of files in Figure 3b and Figure 3c do not add
up to the number in Figure 3a because there are files that are
modified by both defects and enhancements.

B. Comparing quality with controlled confounding factors

For source files, the two major confounding factors are
the number of changes to the code and the code size. The
third factor, the team size is only applicable for components.
To control for the two confounding factors, we compare the
resolution time of distributed and collocated files across evenly
distributed classes of number of code changes and code size. If
each class exhibits similar differences between the distributed

and collocated files as in the straight comparison, we can
safely rule out the factor. Otherwise, the confounding factor
might be the main factor instead.

Figure 4 shows the box plots of the distributed and collo-
cated files when controlling for the number of changes. We
apply equal frequency discretization on the number of changes,
i.e., we divide the number of changes into five classes of equal
size, each containing 20% of the data. The first one has the
smallest number of changes (2 changes). The fifth one has
the largest number of changes (10 to 37). The triplet on top
of the box plot indicates the minimum, the median, and the
maximum number of changes in that class. We calculate the p
value of the MWW test between resolution time of distributed
and collocated files within each class. We show the p value
at the top of each box plot. Interestingly, when the number
of changes is small, the collocated files take longer to patch,
contradictory to the straight comparison. In the third category,
the difference is not statistically significant (p > 0.05). In the
remaining categories, distributed files take longer to patch. The
differences are statistically significant (p < 0.05).

Figure 5 shows box plots of the distributed and collocated
files when controlling for code size. Similarly, we divide
source files into six classes of equal size according to the code
size. The first one has the smallest files; the sixth one has the
largest files. We also print the p value of the MWW test at
the top of each box plot. Interestingly, when the size is very
small or very large, there is no difference in resolution time
between distributed and collocated files (p > 0.05). However,
in the size categories in between, distributed files take longer
to patch.

Judging by the differences found in both controlled com-
parisons, we can say that the number of changes plays some
role in the difference observed in the straight comparison. For
source files with only two changes, collocated files take longer
than distributed files, which is contradictory to the straight
comparison. The effect of code size, on the other hand, is much
smaller. Although the smallest and the largest files exhibit no
statistically significant difference in resolution time, the box
plots show that the distributed files still take slightly longer
to patch. We confirm the role of the two confounding factors
using a multivariate analysis in the next subsection.

C. Multivariate analysis

Figure 6 shows the results of the multivariate analysis (see
Section III-D) on the resolution time of source files. For each
source file, we consider three possible factors that can affect
the resolution time: distance measure, code size, and number
of changes. Distance measure is the number of development
locations. It represents the distance effect in our analysis, while
size and change are the two confounding factors.

The result of this analysis confirms the results of the
controlled comparison in the previous subsection. The distance
measure has a significant effect on resolution time (71%) by
itself. Number of changes also has a significant effect (55%).
Size, on the other hand, has a much smaller effect (12%).
Hence, the major confounding factor is the number of changes.



Distributed
N=139

Collocated
N=1374

# change:  2 < 2 < 2 
p = 0.024

Distributed
N=159

Collocated
N=1345

# change:  3 < 3 < 3 
p = 0.004

Distributed
N=187

Collocated
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# change:  4 < 5 < 6 
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Distributed
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Collocated
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Distributed
N=472

Collocated
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# change:  10 < 16 < 37 
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Fig. 4. Comparing the resolution time of distributed and collocated source files controlled by the number of changes.
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Distributed
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Fig. 5. Comparing the resolution time of distributed and collocated source files controlled by the size of the files.
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Fig. 6. Multivariate analysis for resolution time of source code files. The
distance measure is the number of team locations where the file has been
modified (the solid red arrows). The confounding factors are the size of the
code (the dashed dotted black arrows) and the number of changes to the code
(the dashed blue arrows). For confidentiality reasons, we scale the deviance
explained to 100% of the full model.

To compare the effect of distance and the effect of the number
of changes, we look at the dashed blue, solid red, then dashed
dotted black path. When we add the number of changes to

the model (the dashed blue arrow), the deviance explained
increases to 55%. Then, when we add the distance measure
(the solid red arrow), the deviance explained almost doubles
to 99%, which is an additional increase of 44% on top of the
55%. This means that the distance measure contributes to the
model as much as the number of changes.

D. Conclusion
The combined results show that the distance effect nega-

tively impacts the quality of source files. We arrive at this
conclusion due to three reasons. The first reason is that the
resolution time of distributed files is longer than that of collo-
cated files, based on the straight comparison (Section IV-A).
Second, when we perform the comparison controlling for the
confounding factors, distributed files are still taking longer to
patch in the majority of cases (Section IV-B). This means that
the distance effect must have a significant impact on the delay
in resolution time. Thirdly, our multivariate analysis confirms
the results of the controlled comparisons (Section IV-B). The
analysis shows that the distance effect has a larger impact than
the two confounding factors.
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Fig. 7. Comparing the quality of distributed and collocated components. The
resolution time of a component is measured in hours.

V. RQ2: DOES THE DISTANCE EFFECT EXIST AT THE
COMPONENT LEVEL?

In this section, we determine if distance also has an impact
on quality of components. Similar to RQ1, we apply the same
analyses as described in Section III-D.
A. Comparing distributed and collocated components

The straight comparison between distributed and collocated
components is plotted in Figure 7. Figure 7a shows that the
average resolution time of distributed components is higher
than that of the collocated components. However, a MWW
test shows that the difference is statistically insignificant
(p > 0.05). Similar observations can be made for defects and
tasks by themselves, as shown by Figure 7b and Figure 7c,
respectively. It seems that the distance effect does not have a
significant influence on resolution time at the component level.

However, the defect count shows the opposite. As we can
see in Figure 7d, distributed components contain more defects
than collocated components (80 vs 35). This difference is
statistically significant (p < 0.05). Hence, it is possible that
the distance effect has a negative impact on the quality of
software components. Thus, the controlled comparisons and
the multivariate analysis need to find out if the distance effect
is the main factor that influences the defect counts.
B. Comparing quality with controlled confounding factors

We identify two confounding factors that might influence
the component’s number of defects: code size and team size.
The third factor, the number of changes, is not meaningful for
this analysis because, by definition, it highly correlates with
the number of defects.

Figure 8 compares the defect count between the distributed
and collocated components when controlling for the total
code size of the component. We divide the components into
five classes of equal size according to the code size. The
first class has the smallest components, whereas the fifth
one has the largest components. We print the p value of
the MWW test at the top of each box plot. Interestingly,
except for the components in the third size class, none of
the differences in defect count are statistically significant. The
third class shows a significant difference, yet the collocated
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Fig. 9. Comparing the defect counts of distributed and collocated components
controlled by the number of people in the team.
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Fig. 10. Multivariate analysis for defect count of components. The distance
measure is the number of team members’ location (the solid red arrows). The
confounding factors are the code size (the dashed dotted back arrows) and
team size (the dashed blue arrows).

components have more defects. These results indicate that
size is probably a significant confounding factor because the
significant difference shown in the straight comparison does
not appear within the classes of size.

Figure 9 compares the defect count between distributed and
collocated components when controlling for the number of
team members. We divide components into four classes of
equal size according to the number of contributors. The first
class has the lowest number of contributors (2). The fourth
has the highest number of contributors (6 to 12). We use four
classes instead of five in this case because, if we use five
classes, one class does not have any distributed component
to compare to. The results show that none of the differences
is statistically significant. It means that the number of team
members is also a significant confounding factor.

The results of the controlled comparison show that both
code size and team size seem to be major confounding factors.
Hence, as in RQ1, we perform a multivariate analysis to
determine the most influential factor.
C. Multivariate analysis

Figure 10 shows the multivariate analysis (see Section III-D)
on the defect count of components. For each component,
we consider three possible factors that can affect the defect
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Fig. 8. Comparing the defect counts of distributed and collocated components controlled by the code size of the component.

count: distance measure, code size, and team size. The distance
measure is the number of locations. It represents the distance
effect in our analysis. Code size and team size, on the other
hand, are the two confounding factors.

The result shows that distance has a significant impact on
the number of defects (17%). However, the impact of the team
size is much larger (94%). The code size does not contribute
much. Although team size has a much larger influence, what
we want to find out is if the distance effect also contributes
to the full model. Hence, we look at the dashed blue, solid
red, and then the dashed dotted black path. When we add the
distance measure (the solid red arrow) after adding the team
size (the dashed blue arrow), the deviance explained increases
very little (from 94% to 100%). This implies that most of the
distance effect’s impact has already been explained by the team
size. This means that the difference in defect count between
distributed and collocated components is affected mostly by
the team size. It is possible that distributed teams simply have
more contributors. They were able to locate and fix more
defects. So, their components simply have more defects.
D. Conclusion

Our results support the argument that distance has no
significant effect on the quality of software components due
to three reasons. The first reason is that there is no significant
difference in resolution time between distributed and collo-
cated components in the straight comparison (Section V-A).
The second reason is that even when there is a significant
difference in defect count between distributed and collocate
components in the straight comparison, there is no difference
in the controlled comparisons (Section V-B). The third reason
is that the multivariate analysis (Section V-B) confirms that
even though distance can have a significant impact on the
defect count, most of the impact can be explained by the team
size.

VI. DISCUSSION

A. Can aggregation bias explain the contradictory findings on
the distance effect?

The findings from our study compared to previous studies
(see Table I) are:

• RQ1 (Section IV): The effect of distance can be observed
at the file level which confirms the findings from Herbsleb
at. el. [8] and Cataldo at. el. [5], [6], [7].

• RQ2 (Section V): The effect of distance cannot be
observed at the component level which confirms the
findings of Nguyen at. el. [11], Bird at. el. [10], and
Spinellis [12].

Since there are strong evidences of aggregation bias in
defect prediction [19], [17], [20], [21], we would argue that
the results indicate that aggregation bias might play a role in
the contradictory findings.

B. Why does aggregation bias exist?
Aggregation bias has been a debate since the early

1950s [23]. There are many examples that demonstrate the
causes of aggregation bias in various subjects. For example,
Robinson [38] showed that, according to the United States
1930 census, new immigrants are more likely to be illiterate.
However, states that have more immigrants are less illiterate.
So it would not be logical to make inference about individuals
from properties of the aggregate. In the case of immigrant and
illiteracy, the cause of aggregation bias is that new immigrants
tend to settle in states that have less illiteracy.

Unfortunately, we cannot provide the causes for aggregation
bias in our study. One possibility is that the different levels of
artifacts represent different socio-psychological processes that
are not linearly related. Studies in sociology found that the
linkage among units of an organization can cause the system
to exhibit effects that are different from that of a collection of
individual units [39]. One mechanism of organization linkages
is called the ”negative feedback loop”. When a unit of an
organization exhibits a negative effect on the organization,
other units compensate. So, even though there is a negative
effect at the unit level, at the organization level, there is no
negative effect. For our case study, it is possible that the
difficulty in making changes to the distributed source files
urges the developers to be more efficient in other activities,
such as integration testing or planning. Such compensation
might have cancelled out the negative effect of distance. So,
when we look at the components, there is no noticeable effect.



C. What does this mean for past and future research?

The existence of aggregation bias poses the following
challenge in the use of software artifacts to study software
quality and processes: Every software artifact is an aggregation
of another one. One would argue that a class file is actually
aggregation of the functions in the class. The functions them-
selves consist of statements. Thus, we cannot even conclude
that the distance effect exists in general using just the data
from software artifacts in our case study, i.e., the Jazz project.

Because of that challenge, future research should:
Independently verify findings using other research

methodology such as surveys, interviews, or ethnography:
We were eventually able to talk to the Jazz team members.
They did confirm informally that they encounter serious chal-
lenges with distributed development. Reallocation of team
members was required in some instances. The challenge of
distance is also prevalent in industry’s sources. For example,
one of the Agile Manifesto’s principle is: The most efficient
and effective method of conveying information to and within
a development team is face-to-face conversation [40].

Replicate many of the past studies to see if there are
missing results: Many studies that use software artifacts only
study a single level of artifacts. So, researchers should be
encouraged to conduct replication studies using other artifacts.
The fact that a study has established a relationship between
a quality construct and properties of certain software artifacts
should not discourage other researchers to examine the same
relationship using other levels of artifacts. Researchers can
also explore other levels of artifacts. For example, recent
studies [41], [42], [43] suggested that defect prediction should
be done on metrics of a lower level artifact than class file: the
change itself.

VII. THREATS TO VALIDITY

Internal validity. We checked three possible confounding
factors: file size, number of changes, and team size. There
are, however, other possible confounding factors such as
complexity [31] or task dependencies [7].

We use the same distance construct as prior studies: collo-
cated vs distributed. However, there are newer and finer-grain
constructs for distance [7], [44] that can also be considered.

The MWW test requires that samples are independent. This
is true for components. However, there are work items that
deliver changes to both distributed and collocated files. For this
reason, we confirmed our findings with a multivariate analysis,
which found that distance has a major effect on the resolution
time. We also ran an ANOVA analysis on the final model.
It shows that both the distance measure and the number of
changes are statistically significant, while the code size is not.
Hence, we can safely say that the distance effect has a real
impact on resolution time of distributed source files.

When there are tests on overlapping data, a stronger level
of confidence must be used. In most cases, when we apply
multiple MWW tests, the data are not overlap. For example,
in the file level comparisons controlling for the number of
changes (Figure 4), the files in each class are separated.

However, the straight comparison at the file level (Figure 3
a, b, and c) has overlapping data because some files are
changed by both defect fixes and enhancements. We apply the
Bonferroni correction [37] for these three hypothesis tests. The
correction essentially divides the p value of each test by three.
The results still hold. All the differences shown on Figure 3
are still statistically significant after the correction.

It is possible that the reason why the differences are
significant at the file level but not at the component level
is because there are more files than components. To analyze
this hypothesis, at the file level, we measure the effect size
using Cliff-Delta and we find that our results hold with a
non-negligible effect size. At the component level, even if the
statistics in Figure 7 were significant, our multivariate analysis
on defect count in Figure 10 shows that the team size is a
significant confounding factor. The same analysis but on the
response time shows a similar pattern. So the sample size is
not the reason for the contradictory results at the file level and
the component level.

The MWW test is also sensitive to an unbalanced number
of data points. It may yield false statistical significant results.
There are more collocated than distributed artifacts. So, we
rerun the tests in RQ1 where the statistical significant results
are important to the finding. This time, we randomly sampled
the collocated files so the number is the same as the distributed
files. We rerun the tests 50 times to eliminate sampling bias.
All the tests show similar results except for the first class of
number of changes in Figure 4, which becomes statistically
insignificant. This does not affect our conclusion for RQ1.

External validity. This paper is on improving external
validity of studies that use software artifacts. There are many
studies that confirmed the existence of aggregation bias on
defect counts [17], [19], [20], [21]. This study shows that
aggregation bias also affects resolution time. It is possible,
however, that other software quality metrics might have more
resistance to aggregation bias.

VIII. CONCLUSION

In conclusion, we demonstrate that aggregation bias is a
possible explanation for the contradictory findings on the effect
of distance on distributed teams. We conduct a study of the
same software project using two different levels of artifacts.
The findings are different, which calls for special attention to
the level of artifacts used in studies of software artifacts.

The finding suggests an extra dimension for external repli-
cation of past studies. For example, there are many studies
that use different product and process metrics [33], [34], [31],
[45] to predict different aspects of software quality. Do these
approaches work at all levels of artifacts? Such replication
would provide a better understanding of defect prediction
models.
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