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ABSTRACT

In the mobile app ecosystem, end user ratings of apps (a mea-
sure of end user perception) are extremely important to study as
they are highly correlated with downloads and hence revenues. In
this study we examine the relationship between the app ratings
(and associated review-comments) from end users with the static
analysis warnings (collected using FindBugs) from 10,000 free-to-
download Android apps. In our case study, we find that specific
categories of FindBugs warnings such as the ‘Bad Practice’, ‘In-
ternationalization’, and ‘Performance’ categories are found signif-
icantly more in low-rated apps. We also find that there exists a
correspondence between these three categories of warnings and the
complaints in the review-comments of end users. These findings
provide evidence that certain categories of warnings from Find-
Bugs have a strong relationship with the rating of an app and hence
are closely related to the user experience. Thus app developers can
use static analysis tools such as FindBugs to potentially identify
the culprit bugs behind the issues that users complain about, before
they release the app.

1. INTRODUCTION

Static analysis tools are used by developers to identify possible
issues before a software is released. These tools automatically ex-
amine source code and produce warnings that help developers find
possible issues. Previous research has confirmed that static analy-
sis tools can help identify warnings within the code, many of which
are actual software bugs [1]. Thus addressing the results of static
analysis can help improve the quality of a software. However, there
are many categories of static analysis warnings and it is not clear
if some of these categories lead to software bugs that impact the
user’s perception of the quality of an app.

User perception in the mobile app ecosystem, represented as user
ratings, exhibit a statistically significant relation to the downloads,
and hence the revenue generated by an app [2]. When mobile app
users are dissatisfied with the quality of an app, they often give a
low rating to the app (a 1-star indicates bad quality while a 5-star
indicates good quality). In addition to these ratings, app users can
also leave review-comments that are a text description that explains
their rating.

Problem Statement: Therefore, if bad ratings of apps are re-
lated to certain categories of static analysis warnings, then devel-
opers can use static analysis tools to potentially identify and fix the
bugs that lead to poor ratings.

In this case study, we examine the different categories of static

analysis warnings from FindBugs (an open source program that au-
tomatically warns about potential bugs in Java code [3]) in 10,000
free-to-download Android apps from the Google Play store. By
studying a large corpus of apps, we want to empirically examine
the relationship between each of the categories of FindBugs warn-
ings in an app, and the rating assigned to the app by the end user.
‘We add another dimension of evidence to the relationship, by com-
paring the complaints in the review-comments of the apps, and the
warnings from FindBugs. More specifically, we seek to answer the
following research question:

RQ. Which category of FindBugs warnings occur more fre-
quently in low-rated apps than high-rated apps?

We find that warnings in the ‘Bad Practice’, ‘International-
ization’ and ‘Performance’ categories have significantly higher
densities in low-rated apps than high-rated apps.

Takeaway Message: The results from our study suggests that de-
velopers can benefit from using static analysis tools (i.e., FindBugs)
on their Android apps as this can help them identify certain types
of software bugs in their app that could result in bad ratings.

2. BACKGROUND ON FINDBUGS

We pick FindBugs as the static analysis tool for our case study.
While there are other prominent static analysis tools, we select
FindBugs because it strives to reduce the number of false positive
warnings [4]. This, we feel is what makes a static analysis tool
useful since developers look for low-cost, high-effectiveness tools.
Moreover, we can run FindBugs on Jar files as we do not have ac-
cess to the unpackaged source code.

Overall, FindBugs identifies warnings for over 400 possible bugs.
These warnings are grouped into the following eight categories:
‘Bad Practice’, ‘Correctness’, ‘Internationalization’, ‘Malicious Code
Vulnerability’, ‘Multi-threaded Correctness’, ‘Performance’, ‘Se-
curity’ and ‘Dodgy Code’. Moreover, FindBugs also assigns dif-
ferent priorities to each warning; the priority level of the warn-
ings is dependent on how confident FindBugs is about whether the
warning is in fact a bug. In the next section, we provide a detailed
overview of our study, and how we used FindBugs to identify warn-
ings in Android apps.

3. STUDY DESIGN

Figure 1 illustrates the different steps for our study of running
FindBugs on 10,000 Android apps.
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Figure 1: Overview of our process

3.1 Data Selection

The data sample in our study are 10,000 free-to-download An-
droid apps from the Google Play market. These apps are randomly
selected from a list of apps generated by Dienst (et al.)!. The apps
cover a broad range of ratings and categories. The minimum rating
of our sample apps is 1.3 stars while the maximum is 5 stars. The
median rating of these apps is 4.07 stars. Moreover, we only select
apps, which have a minimum of 30 individual ratings. This ensures
that a few users don’t skew the rating of these apps. The median of
the number of individual ratings in our selected apps is 181. Our
sample of apps is composed of apps in all categories in the Google
Play store. Collectively, game apps account for the highest number
of apps, while weather apps account for the lowest.

3.2 Data Collection

For each of these apps, we download the APK (Android appli-
cation package) file, the overall rating of the app, the number of
people rating the app, and their review-comments. We collect up to
500 of the newest reviews for each of the apps (Google Play limits
the total number of reviews that non-developers can see). Each re-
view consists of the rating assigned to the app by the user, and the
text of the review-comment that the users enter.

3.3 De-compiling Android apps

After downloading the selected apps, we extract the Jar files from
the APKs since this is the format which FindBugs requires. We use
an open source tool called Dex2Jar to extract Jar files from APKs .

3.4 Running FindBugs on Android apps

We run FindBugs using its recommended settings that detects
high and medium priority warnings, but ignores low priority warn-
ings — such low priority warnings often include false positives and
are thus not a part of the recommended configuration [3]. In addi-
tion, we ignore all style and naming convention warnings (since we
are looking at the decompiled binary of the original code).

After running FindBugs on each of the apps, we extract the den-
sity of each warning per app. Warning density in FindBugs is de-
fined as warnings per thousand lines of non-commenting source
statements. In addition to this, we also identify the counts of warn-
ings in each of the 8§ categories, and the occurrence of each warning
along with the name of the class where this warning occurred.

3.5 Removing warnings of common libraries

Android apps, like all software, are built with numerous external
libraries. Since we want to examine the relationship between rat-
ings and warnings within each app, we cannot have interference in
our analysis because of warnings from common libraries. For ex-
ample, attributing the warnings of the Android.support library (a set
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of code that provide backward-compatibility and are found across
many Android apps) adds unnecessary noise to the data.

The first step in removing these libraries is identifying the ones
that are found across many apps. We identify the external libraries
using the packaging information and class names of the base classes.
For example, the base class android.support.app.Fragment lets us
identify that this app uses the Android.support library.

We count the number of apps that each package is found in. We
found 4,049 shared packages, with a few packages that are found
in many of the apps. After the first few hundred popular packages,
the frequency quickly declines. The skew in the data is very high
with com.google packages, included in 5,611 apps.

For this study, we manually examine 766 packages that are shared
in 10 or more apps and the libraries that the packages are a part
of. We examine the packages to make sure that they are actually
a library and not a commonly used package name (for example,
com.myapp.ButtonFragment). For each of these potential libraries,
we examined public code bases e.g., Github, Ohloh that match their
package name. After examining hundreds of potential libraries, we
end up flagging a total of 329 common libraries and we ignore the
warnings from the packages of these libraries in our analysis.

4. RESULTS

In this section, we discuss the motivation, approach and findings
for our research question. We then present a more detailed discus-
sion of our results.

RQ: Which category of FindBugs warnings occur more frequently
in low-rated apps than high-rated apps?
Motivation: One of the common criticisms of static analysis tools
is that they often produce numerous false positives [1]. This means
that even if developers incorporate static analysis tools into their
workflow, developers might end up wasting their time solving warn-
ings that don’t have an impact on the quality of their software.
While FindBugs explicitly focuses on reducing false positives as
much as possible, it is not perfect either. Some of the warnings it
finds within apps could be benign as well. Therefore we want to
identify the warnings that are most related to the low rated apps.
Identifying such warnings will help developers prioritize their ef-
forts towards such warnings, which could be the culprit behind the
issues about which users complain.

Approach: To answer this RQ, we want to check if densities of
a particular category of FindBugs warnings are different between
high and low-rated apps. To identify high and low-rated apps,
we first sort the 10,000 apps by their ratings. We identify the
25%(2,500) apps with the best ratings as high-rated apps, and 25%
with the worst ratings as low-rated apps. The high-rated apps range
from a rating of 4.3 to 5 stars, while the low-rated apps range from
1.29 to 3.6 stars.

We compare the warning densities (to control for the size of



the apps) for each of the eight categories (as mentioned in Sec-
tion 2) of FindBugs warnings, for the high and low-rated apps, us-
ing a one-tailed Mann-Whitney U-test MWU) with o« < 0.05 [5].
The dependent variable is the warning density of each of the eight
categories of FindBugs warnings (which is continuos in nature).
The independent variables are the two independent groups of apps:
high-rated apps and low-rated apps. The null hypothesis of the
MWU test is: The warning densities for a category of FindBugs
warning is the same for two populations, namely the high-rated
apps and low-rated apps. The alternate hypothesis is: The warning
density for a category of FindBugs warnings is larger in low-rated
apps when compared to high-rated apps. We use the Mann-Whitney
U-test, since it does not assume that the data is normally distributed,
unlike the Student T-test. In the next subsection, we present the cat-
egories of warnings that were statistically different.

Findings: We find that three categories (out of eight categories)
of warnings occur statistically significantly more in low-rated
apps, than high-rated apps. As shown in Table 1, Bad Practice
warnings, Internationalization warnings, and Performance warn-
ings, have a statistically higher warning density in the low-rated
apps as compared to the high-rated apps. Bad Practice warnings
are violations of essential coding practices (e.g., equals problems,
dropped exceptions, misuse of finalize). Internationalization warn-
ings are warnings where developers misuse encoding in characters.
Performance warnings are for code that is slow. We also present the
median density values for these three categories among the high-
and low-rated apps.

These findings imply that developers should prioritize warnings
in these three categories over others as they tend to be found more
in low-rated apps and could lead to low ratings.

Discussion: After identifing the three categories of FindBugs warn-
ings that occur signficantly more in low-rated apps, we now exam-
ine if users explicitly mention the issues related to these warnings in
the reviews of apps. To do so, we compare the complaints in the re-
views of the apps that have the highest densities of these warnings,
with the apps that have the lowest densities. To focus on the com-
plaints we only analyze the reviews-comments which have a rating
of 3 stars or less [6]. We filter away the apps that have less than 10
review-comments (so that a few review-comments will not skew
the overall complaints) [7]. We are left with a total of 4,708 apps.
From these 4,708 apps, we identify the top 25% apps (1,177) which
have the highest and the lowest reported densities for the warnings
in Bad Practice, Performance and Internationalization categories.
Thus, we have the 1,177 apps with the highest Bad Practice warn-
ing density, and 1,177 apps with the lowest Bad Practice warning
density. Similarly we have subsets of apps for the Performance and
Internationalization categories as well.

To analyze the review-comments, we first identify the keywords
that we should look for. Judging by the nature of these three cat-
egories, and our prior experience with manually categorizing re-
views of mobile apps [8], we select the keywords shown in Table 2
for our analysis. We count the number of review-comments per
app that has a keyword related to a warning category. For exam-
ple, we count the number of review-comments per app that has the
keywords slow, hang, lags, slug and attribute it to ‘Performance’
complaints from users. This list also includes stemmed versions of
each of these words (e.g., lags, lagging, lagged). We only count
one occurrence of these keywords per review, so if both ‘slow’ and
‘hangs’ are mentioned in a review, we only count this as one occur-
rence of a Performance complaint. We do this since we only care if
a review-comment contains a particular type of complaint.

Thus we get the frequency of review-comments with complaints
corresponding to a particular warning category, along with the total
number of review-comments for the app (i.e., fotal-review-comments:
500, performance-complaint-count: 50). Following this step we
turn the raw count into the percentage values (i.e., fotal-review-
comments: 500, performance-complaint-percentage: 10). We cal-
culate these performance-complaint-percentage for each of the 1,177
apps with the highest performance warning densities, and the 1,177
apps with the lowest performance warning densities. Then we com-
pare the performance-complaint-percentage values across these 2
subsets of apps using the one-tailed Mann-Whitney U (MWU) test,
to see if users complain about performance in apps that have a
higher density of performance warnings. We repeat this for the
other two categories of warnings as well.

We find that apps with the highest densities of warning for a cat-
egory has a statistically significantly higher rate of the correspond-
ing complaints. We present the p-values of the MWU test and the
mean percentage of review-comments in an app that has complaints
pertaining to a particular category of warning (i.e., warnings in the
Bad Practice, Performance and Internationalization categories) in
Table 2.

An example of such an app is Media Player (trial) which has
a Performance warning density of 6.4. A quick examination of
the reviews for this app reveals numerous comments mentioning
performance issues and crashes such as “Takes an age to search
SD card, then when you try to play a video it just says Buffering
until you get bored and close it. Rubbish."

Many of these internationalization warnings are found in apps
where the user is complaining about the encoding, or being forced
to use a specific language. Thus, we are able to establish that warn-
ings identified with FindBugs can directly manifest in the user’s
review-comments as complaints about the apps, and thus impact
the ratings of the apps.

We find that three categories of warnings have a statis-
tically higher density in low-rated apps than high-rated
apps: Bad Practice, Internationalization and Performance.
This suggests that developers should prioritize their QA ef-
forts on addressing these warnings, as their resultant bugs
could have a detrimental affect on the rating of their app.

S. RELATED WORK

Hovemeyer et al. introduced FindBugs as a tool that automati-

cally warns about a variety of bugs within Java programs [4]. In
this section we survey the work most related to static analysis tools
on Android, and work related to mobile apps. In this study, we ex-
amine the relationship between the warnings from FindBugs, and
the user ratings in the Google Play market.
Static analysis in Android apps: Guo et al. proposed a static anal-
ysis tool called Relda that can help developers identify resource
leaks in Android apps [9]. Their tool analyzes the callbacks in An-
droid framework to locate the resource leaks. Similarly, Payet et
al. extended a pre-existing static analysis tool called Julia and im-
proved the precision of detecting nullness in Android apps [10].
Their work also demonstrated the usefulness and versatility of static
analysis tools in Android apps. Maji et al., characterize the failures
in the Android and Symbian OSes [11]. Our work complements
these studies as we show that there is a value to developers in using
automated static analysis on mobile apps (and not the OS on which
the apps are installed) to check for issues that could lead to com-
plaints in user reviews.



Table 1: Categories of FindBugs warnings that have a statistically significantly higher density of warnings in low rated apps compared

to high rated apps.

FindBugs Warning Category | MWU test p-value

Median Warning Density
High-Rated Apps | Low-Rated Apps

Bad Practice | 0.011 | 021 | 0.24
Internationalization | 1.57e-11 | 011 | 018
Performance | 4.03¢-05 | 039 | 048

Table 2: Keywords used to identify user complaints in review-comments associated with a particular warning category and the

results of the analysis in the discussion subsection.

FindBugs Warning Category | Keywords MWU Test p-value | Percentage of Review-Comments with
the Corresponding Complaint (Mean
%)
Low density apps | High density apps
Bad Practice

Problem, Broke

Bug, Buggy, Issue | 4.02e-09 | 5.6 | 6.7

Internationalization Country, Language
‘Word, International
Internationalization

UTF, Encoding

0.0002261 35 3.8

Performance Slow, Hang

Lag, Slug

| 0.0004456 | 39 | 6.0

Mobile App Ratings: Harman et al. found that there is a strong
correlation between app rating and number of downloads, indi-
cating that ratings are a strong indicator of the users’ opinion of
apps [2]. Dennis et al. analyzed app review-comments and found
that while the quality of the feedback varies, review-comments of-
ten contain useful feedback, bug reports and user experience [12].
Our case study uses the ratings of apps to identify high and low-
rated Android apps and compare FindBugs warnings within the
apps. We also examine the complaints in the review-comments of
apps.

Quality in mobile apps: In our previous study we examined the
reviews of apps and showed that complaints about functional errors
(i.e., bugs) and crashes are the two most common complaints that
are received by apps [8]. This highlights the importance of improv-
ing the quality of apps. Stevens ef al. examined permission usage
in 10,000 Android apps and found a relationship between the pop-
ularity of a permission and the number of times it is misused [13].
Linares et al. examined API usage of Android apps and found that
fault and change proneness within the APIs of Android may have
an effect on the quality and ratings of apps [14].

Previous research has shown the usefulness of Find-
Bugs and the importance of studying ratings and review-
comments of mobile apps. In this study, unlike the past re-
search, we examine the relationship between FindBugs and
the user perceived quality of mobile apps.

6. THREATS TO VALIDITY

In this section we discuss the perceived threats to our work and
how we address them.
Construct Validity: In this study, we did not analyze the code
of the apps in their original form. We ran FindBugs on the de-
compiled versions of the 10,000 apps (some of which could be ob-
fuscated). While this may have affected the results, we are limited
to this approach, since we do not have access to the source code.
For the APK files that we do have, we use Dex2Jar that is also used
in other studies to de-compile APK files [15].

When analyzing the warnings found in the Android apps, we re-

moved the warnings from third party libraries. It could be the case
that the warnings in these libraries maybe even more problematic
than the warnings in the apps. However, we feel that removing
these libraries is a better approach since the libraries are shared
across many apps. Assigning the warning attributes of the third
party libraries to the apps themselves also adds a low reliability of
measures threat which could lead us to invalid conclusions. How-
ever, we verified that the relationship between FindBugs warnings
and ratings holds even when all libraries are included.

Internal Validity: The specific tools that we used for de-compiling
the apps and identifying the warnings are not perfect. Hence, their
usage may affect our results. However, we used standard tools
that have been used in past studies for reverse engineering Android
apps [7, 14, 15]. We are also restricted to this approach because of
the large scope of the study. We also used the recommended setting
of FindBugs to analyze the Jar files.

In the discussion of RQ, we identified the mention of different
complaints based on the usage of some keywords in reviews. It
could be the case that that there were additional words used to de-
scribe these complaints. However, manually analyzing thousands
of reviews is outside the scope of this study. The keywords that
we did pick, are based on our experience with manually analyzing
complaints of apps [8]. By focusing on the reviews which gave
a rating of 3 or less, we made sure that we focus on the com-
plaints [6].

External Validity: It could be the case that our findings don’t gen-
eralize to all free-to-download Android apps. However we feel that
studying 10,000 apps is a considerable sample. To mitigate the
threat of generalization, we also maximize the coverage of our apps
by studying apps that cover all of the categories of apps. In addition
our 10,000 apps cover a range of ratings that is similar to all apps in
the Google play market®. Additionally, in our paper, we only con-
sider one static analysis tool - FindBugs. Other static analysis tools
like Coverity * or IBM Security AppScan > might yield different set

3http://www.appbrain.com/stats/android-app-ratings
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of warnings. Therefore such tools could be used to identify other
warnings that could impact the user ratings as well. In order to con-
trol for the threat that arises due to using only FindBugs, we refrain
to only making conclusions about FindBugs warnings throughout
the paper. Future work could use the same analysis technique as
our paper to examine the use of other static analysis tools in order
to identify other types of warnings that could have a relationship
with the user ratings.

Conclusion Validity: In our paper we examined a very large set of
apps (10K) to identify if there was a relationship between specific
types of FindBugs warnings and user ratings. We identified three
categories of FindBugs warnings. Note that our claim is not that
removing the FindBugs warning will increase the rating, rather only
that they appear more significantly in low-rated apps. However,
we did not carry out a controlled study to check if removing the
FindBugs warnings would in fact increase the rating. While an
interesting question, such a controlled study is out of the scope of
this paper, and we would like to address this in future work.

7. CONCLUSION AND RECOMMENDATIONS

The most important take away for app developers is that there
are three categories of FindBugs warnings that appear significantly
more in low-rated apps. This means that these FindBugs warnings
lead to some bugs that have a degrading affect on the quality of the
app (hence resulting in low-ratings). For app developers this means
that they should not neglect running FindBugs (or other static anal-
ysis tools) as it is a low-cost method of finding the solutions to some
of the user complaints. If the overall warning density for their app
is too high, then they should look at the categories of bugs that seem
to have a high warning density, and address those warnings before
they release the app.

For researchers this study provides a direct link between static
analysis warnings from one tool and software quality (expressed as
user ratings). In the future, we plan to examine other static analysis
tools and how they could help developers improve the quality of
their apps. We also intend to apply the same experimental process
to the other steps in the quality assurance cycle, so that we can
recommend a more complete set of quality assurance practices to
mobile app developers.
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