The Road Ahead for Mining Software Repositories

Ahmed E. Hassan
Software Analysis and Intelligence Lab (SAIL)
School of Computing, Queen’s University, Canada
ahmed @cs.queensu.ca

Abstract

Source control repositories, bug repositories, archived
communications, deployment logs, and code repositories
are examples of software repositories that are commonly
available for most software projects. The Mining Software
Repositories (MSR) field analyzes and cross-links the rich
data available in these repositories to uncover interesting
and actionable information about software systems. By
transforming these repositories from static record-keeping
ones into active repositories, we can guide decision pro-
cesses in modern software projects. For example, data in
source control repositories, traditionally used to archive
code, could be linked with data in bug repositories to help
practitioners propagate complex changes and to warn them
about risky code based on prior changes and bugs. In this
paper, we present a brief history of the MSR field and dis-
cuss several recent achievements and results of using MSR
techniques to support software research and practice. We
then discuss the various opportunities and challenges that
lie in the road ahead for this important and emerging field.

1 Introduction

Prior experiences and dominant patterns are the driving
force for many decision-processes in modern software or-
ganizations. Practitioners often rely on their experience,
intuition and gut feeling in making important decisions.
Managers allocate development and testing resources based
on their experience in previous projects and their intuition
about the complexity of the new project relative to prior
projects. Developers commonly use their experience when
adding a new feature or fixing a bug. Testers usually pri-
oritize the testing of features that are known to be error
prone based on field and bug reports. Software reposito-
ries contain a wealth of valuable information about software
projects. Using the information stored in these repositories,
practitioners can depend less on their intuition and experi-
ence, and depend more on historical and field data.

The Mining Software Repositories (MSR) field analyzes
and cross-links the rich data available in software reposito-
ries to uncover interesting and actionable information about
software systems and projects. Examples of software repos-
itories are:

Historical repositories such as source control reposito-
ries, bug repositories, and archived communications
record several information about the evolution and
progress of a project.

Run-time repositories such as deployment logs contain
information about the execution and the usage of an ap-
plication at a single or multiple deployment sites.

Code repositories such as Sourceforge.net and Google
code contain the source code of various applications de-
veloped by several developers.

Software repositories are commonly used in practice as
record-keeping repositories and are rarely used to support
decision making processes. For example, historical repos-
itories are used to track the history of a bug or a feature,
but are not commonly used to determine the expected reso-
lution time of an open bug based on the resolution time of
previously-closed bugs.

MSR researchers aim to transform these repositories
from static record-keeping ones into active repositories
which can guide decision processes in modern software
projects. Mining these historical, run-time and code repos-
itories, we can uncover useful and important patterns and
information. Historical repositories capture important his-
torical dependencies [20] between project artifacts, such as
functions, documentation files, or configuration files. De-
velopers can use this information to propagate changes to
related artifacts, instead of only using static or dynamic
code dependencies which may fail to capture important de-
pendencies. For example, a change to the code which writes
data to a file may require changes to the code which reads
data from the file, although there exists no traditional depen-
dencies (e.g., data and control flow) between both pieces of



code. As for run-time repositories, they could be used to
pinpoint execution anomaly by identifying dominant exe-
cution or usage patterns across deployments, and flagging
deviations from these patterns. Code repositories could be
used to identify dominant and correct library usage patterns
by mining the usage of a library across many projects.

The MSR field is rapidly taking a central and important
role in supporting software development practice and soft-
ware engineering research. In this paper, we present a brief
history of the MSR field and discuss several recent achieve-
ments and results of using MSR techniques to support soft-
ware research and practice. We then discuss the various
opportunities and challenges that lie in the road ahead for
this important and emerging field.

2 A Brief History of the Mining Software
Repositories (MSR) Field

The Mining Software Repositories (MSR) field is matur-
ing thanks to the rich, extensive, and readily available soft-
ware repositories. Table 1 lists several examples of software
repositories which could be mined. Although these reposi-
tories are readily available for most large software projects,
the data stored in these repositories has not been the focus of
software engineering research until recently. This is owing
primarily to the following two reasons:

Limited Access to Repositories. Companies in many
cases are not willing to give researchers access to
such detailed information about their software systems.
Another possible source for software repositories is
academic projects and systems. Unfortunately, the repos-
itories of such projects and systems are not as rich nor
as interesting as the those of long-lived widely-deployed
commercial software systems. The earliest research work
in the MSR field were based on the repositories of com-
mercial software systems and were done in cooperation
with a few commercial organizations such as NASA [7],
AT&T [55, 14], Nortel [30], Nokia [20], Avaya [50], and
Mitel [59].

Complexity of Data Extraction. Most repositories are not
designed with automated bulk data-extraction and mining
in mind, so they provide limited support for automated
extraction. The complexity of automated data extraction
hindered the adoption and integration of software repos-
itories in other software engineering research. In many
cases, software engineering researchers do not have the
expertise required nor do they have the interest to extract
data from software repositories. Extracting such data re-
quires a great deal of effort and time from researchers,
instead they are more interested in gaining convenient ac-
cess to the extracted data in an easy to process format.

With the advent of open source systems, easy access
to repositories of large software systems became a reality.
Researchers now have access to rich repositories for large
projects used by thousands of users and developed by hun-
dreds of developers over extended periods of time. Early
research in mining software repositories, e.g.[10], made use
of open source repositories, thanks to the wide spread and
growth of open source projects.

In an effort to bring together the practitioners and re-
searchers working in this important and emerging field, the
first International Workshop on Mining Software Repos-
itories (MSR) was held at the International Conference
on Software Engineering (ICSE), the flagship conference
for Software Engineering. After four successful years as
ICSE’s largest workshop, MSR became a Working Confer-
ence in 2008. As a Working Conference, MSR recognizes
the maturity and breadth of the work in the MSR field, while
still encouraging free-form open discussions about the MSR
field. An MSR challenge is also held on a yearly basis so
researchers can compare their techniques towards a com-
mon problem or project. The MSR field continues to attract
a large amount of interest within software engineering. A
2005 issue of the IEEE Transactions on Software Engineer-
ing (TSE) on the MSR topic received over 15% of all the
submissions to the TSE in 2004 [27]. And MSR-related
publications in top research venues continue to grow in size
and quality with many MSR-related papers winning awards
in top venues.

3 An Overview of MSR Achievements

MSR research focuses primarily on two aspects:

1. The creation of techniques to automate and improve
the extraction of information from repositories.

2. The discovery and validation of novel techniques and
approaches to mine important information from these
repositories.

The first line of work is essential to ease the adop-
tion of MSR techniques by others, and the second line of
work demonstrates the importance and value of informa-
tion stored in software repositories and encourages others
to adopt MSR techniques.In this section we present a few
interesting research results along a number of dimensions to
demonstrate the benefits of using MSR techniques in solv-
ing several challenging and important software engineering
problems. For a more extensive review of the work in the
MSR field, we encourage the reader to refer to the “Min-
ing Software Engineering Data Bibliography” maintained
by Tao Xie at http://ase.csc.ncsu.edu/dmse/
at North Carolina State University, and a survey paper by
Kagdi et al. [32] on mining historical repositories.


http://ase.csc.ncsu.edu/dmse/

Repository

Description

Source control reposi-
tories

These repositories record the development history of a project. They track all the changes to the source code
along with meta-data about each change, e.g., the name of the developer who performed the change, the time
the change was performed and a short message describing the change. Source control repositories are the
most commonly available and used repository in software projects. CVS, subversion, Perforce, ClearCase are
examples of source control repositories which are used in practice.

Bug repositories

These repositories track the resolution history of bug reports or feature requests that are reported by users and
developers of large software projects. Bugzilla and Jira are examples of bug repositories.

Archived communica-
tions

These repositories track discussions about various aspects of a software project throughout its lifetime. Mailing
lists, emails, IRC chats, and instant messages are examples of archived communications about a project.

Deployment logs

These repositories record information about the execution of a single deployment of a software application
or different deployments of the same applications. For example, the deployment logs may record the error
messages reported by an application at various deployment sites. The availability of deployment logs continues
to increase at a rapid rate due to their use for remote issue resolution and due to recent legal acts. For instance,
the Sarbanes-Oxley Act of 2002 [1] stipulates that the execution of telecommunication and financial applications
must be logged.

Code repositories

These repositories archive the source code for a large number of projects. Sourceforge.net and Google code are
examples of large code repositories.

Table 1. Examples of Software Repositories

3.1 Understanding Software Systems

Understanding large software systems remains a chal-
lenge for most software organizations. Documentations for
large systems rarely exist and if they exist they are often
not up-to-date. Moreover system experts are usually too
busy to help novice developers, or may no longer be part of
an organization. Information stored in historical software
repositories, such as mailing lists and bug repositories, rep-
resent a group memory for a project. Such information is
very valuable for current members of a project.

Cubranic et al. propose a tool called Hipikat which
silently indexes historical repositories, and displays on-
demand relevant historical information within the devel-
opment environment [12]. While working on a particular
change, Hipikat can display pertinent artifacts such as old
emails and bug reports, discussing the code being viewed in
the code editor.

Dependency graphs and the source code documentation
offer a static view of a system and fail to reveal details about
the history of a system or the rationale for its current state or
design. For example, traditional dependency graphs cannot
give the rationale behind an Optimizer function unexpect-
edly depending on a Parser function in a compiler. Such
rationale is stored in the group’s memory which lives in the
historical repositories for a project. Hassan and Holt pro-
pose mining source control repositories and attaching His-
torical Sticky Notes to each code dependency in a software
system [26]. These notes record various properties con-
cerning a dependency such as the time it was introduced,
the name of the developer who introduced it, and the ra-
tionale for adding it. Using the historical sticky notes on
the NetBSD system, a large open source operating system,
many unexpected dependencies could be easily explained
and rationalized.

3.2 Propagating Changes

Change propagation is the process of propagating code
changes to other entities of a software system to ensure the
consistency of assumptions in the system after changing an
entity. For example, a change to an interface may require
the change to propagate to all the components which use
that interface. The propagation of this change would ensure
that both the interface and entities using it have a consis-
tent set of assumptions. Change propagation plays a central
role in software development. However current practices
for propagating software changes rely heavily on human
communication, and the knowledge of experienced devel-
opers. Many hard to find bugs are introduced by develop-
ers who did not notice dependencies between entities, and
failed to propagate changes correctly.

Instead of using traditional dependency graphs to prop-
agate changes, we could make use of the historical co-
changes. The intuition is that entities co-changing fre-
quently in the past are very likely to co-change in the future.
This is similar in spirit to how retailers suggest other prod-
ucts for customers — Customers, who bought milk, bought
cereal 99% of the time. Zimmermann et al. [68], Ying et
al. [66], Shirabad [59], Hassan and Holt [25] show that sug-
gestions based on historical co-changes are on average ac-
curate 30% of the time (i.e., precision), and can correctly
propose 44% of the entities which must co-change (i.e., re-
call). Recent results by Malik and Hassan show a preci-
sion of 64% and a recall of 78% could be achieved using
more advanced data mining techniques [45]. Hassan and
Holt also demonstrate that historical dependencies outper-
form traditional dependency information when propagating
changes for several open source projects [25]. Kagdi et
al. demonstrate the applicability of historical inforamtion
in propagating changes from code to documentation enti-
ties where there are no structural code dependencies [33].



3.3 Predicting and Identifying Bugs

Predicting the occurrence of bugs remains one of the
most active areas in software engineering research. Using
this knowledge, managers can allocate testing resource ap-
propriately, developers can review risky code more closely,
and testers can prioritize their testing efforts. A substan-
tial number of complexity metrics have been proposed over
the years. The intuition being that complex code is likely
to be buggy. However, results by Graves et al. [22] on a
commercial system and by Herraiz et al. on a large sam-
ple of open source projects [28] show that most complexity
metrics correlate well with LOC. Instead Graves et al. in-
dicate that the two of the best predictors of bugs are prior
bugs and prior changes, i.e., code that has bugs in the past
is likely to have bugs in the future and bugs are not likely
to appear in unchanged code. Moreover, Graves et al. [22]
show that recent bugs and changes have a higher effect on
the bug potential of a code over older changes. The im-
portance of process metrics from historical repositories in
predicting bugs over traditional complexity metrics has as
well been recently shown by Moser et al. for the Eclipse
open source project [52].

Instead of predicting the number of future bugs, prac-
titioners desire tools that would flag the location of bugs
in their current code base so they can fix these bugs. Un-
fortunately the specifications of large software applications
rarely exist, so comparing an application against its ex-
pected and specified behavior using traditional static anal-
ysis techniques is usually not feasible in practice. Instead
researchers have adopted novel techniques which analyze
large amount of data about a software application to un-
cover the dominant behavior or patterns and to flag varia-
tions from that behavior as possible bugs. By analyzing the
source code of an application, tools such as Coverity [16],
can uncover undocumented correctness rules such as “ac-
quire lock L before modifying x” or “do not block when
interrupts are disabled”. The tools then flag any deviations
of these rules in the source code. These deviations are likely
bugs. Several types of rules could be mined from the source
code: Coverity and PR-Miner [41] mine function-pairing
rules; Daikon [17] and DIDUCE [23] mine variable-value
invariants by analyzing execution traces; MUVI mines
variable-pairing rules [44]; and AutoISES mines function
and variable access rules to detect security violations [61].
Recent work by Jiang et al. applies many of the aforemen-
tioned techniques to uncover load testing problems for large
enterprise applications [31]. A load test involves the repeti-
tive execution of similar requests by an application; the pro-
posed approach mines the execution logs to uncover domi-
nant rules and deviation from these rules.

Other tools such as CP-Miner [40] can flag bugs by rec-
ognizing deviations in mined patterns for renaming vari-
ables when clonning (i.e., copy-and-paste) code.

Using historical code changes, DynaMine [43] uncovers
function-pairing rules. For example, if addListener() and
removeListener() are always added together to the code,
then a change were addListener() is added without re-
moveListener() is likely a buggy change. Williams and
Hollingsworth use historical changes to refine the order of
warnings produced by static code checkers [63]. For ex-
ample, warnings for missing to check the return-value for a
called function are ordered based on examining prior code
changes — If a developer in the past added a check for the
return-value for a particular function, then the importance of
checking the return of that function is asserted, and warn-
ings related to missing check are moved higher in the warn-
ing list.

3.4 Understanding Team Dynamics

Many large projects communicate through mailing lists,
IRC channels, or instant messaging. These discussions
cover many important topics such as future plans, design de-
cisions, project policies, and code or patch reviews. These
discussions represent a rich source of historical information
about the inner workings of large projects. These discus-
sions could be mined to better understand the dynamics of
large software development teams.

In many open source projects, project outsiders can sub-
mit code patches to the mailing list. However outsiders can-
not commit code directly to the source control repository
until they are invited to be part of the core group of devel-
opers of a project. Inviting an outsider too early may lead
to inviting individuals that are not well-qualified or may not
fit well with the group. Inviting an outsider too late may
lead to the outsider losing interest in the project and the
project losing a valuable core developer. Bird et al. study
the usual timelines for inviting developers to the core group
in open source projects by mining information from source
code repositories and mailing lists [9].

In addition to uncovering the process for inviting devel-
opers, mailing lists discussions could uncover the overall
morale of a development team with developers using more
optimistic words when they feel positive about the progress
of the project and using negative words when they are con-
cerned about the state of the project. Rigby and Hassan
used a psychometric text analysis tool to analyze the mail-
ing lists discussions to capture the overall morale of a de-
velopment team before and after release time for the Apache
web server project [56].

Users and developers are continuously logging bugs in
the bug repository of large software projects. Each report
must be triaged to determine if the report should be ad-
dressed, and to which developer it should be assigned. Bug
triage is a time-consuming effort requiring extensive knowl-
edge about a project and the expertise of its developers. An-
vik and Murphy speed up the bug triage efforts by using



prior bug reports to determine the most suitable developers
to which a bug should be assigned [5].

3.5 Improving the User Experience

Michail and Xie propose a Stabilizer tool which mines
reported bugs and execution logs to prevent an application
from crashing [47]. When a user attempts to perform an
action which has been reported by others to be buggy, the
Stabilizer tool presents a warning to the user who is given
the opportunity to abort the action. This approach permits
users to use buggy applications while they wait for develop-
ers to fix bugs.

Mockus et al. study the quality of a software application
as perceived by its users [51]. Instead of studying the qual-
ity of the source code, they mine data captured by project
monitoring and tracking infrastructures as well as customer
support records to determine the expected quality of a soft-
ware application. They find that the deployment schedule,
hardware configurations, and software platform have a sig-
nificant effect on the perceived quality of an application, in-
creasing the probability of observing a software failure by
more than 20 times.

3.6 Reusing Code

Code reuse is an important activity in modern software
development. Unfortunately, large code libraries are usually
not well-documented, and have flexible and complex APIs
which are hard to use by non-experts. Several researchers
have proposed tools and techniques to mine code reposito-
ries to help developers reuse code. The techniques locate
uses of code such as library APIs, and attempt to match
these uses to the needs of a developer working on a new
piece of code. For example, Mandelin et al. develop a tech-
nique which helps a developer write the code needed to get
access to a particular object [46], while Xie and Pei [65]
propose a technique to help a developer write the setup and
tear down code needed to use a library method.

3.7 Automating Empirical Studies

A major contribution of the MSR field, is the automation
of many of the activities associated with empirical studies
in software engineering. The automation permits the repeti-
tion of studies on a large number of subject and the ability to
verify the generality of many findings in these studies. For
example, recent work by Robles et al. [57] showed that the
growth of 18 large open software follows a usually linear
or superlinear trend. This work contradicts the fourth law
of software evolution which was proposed by Lehman and
colleagues [39] based on a small sample of industrial sys-
tem. The MSR automation enables the verification of the
generality of prior findings.

Common wisdom and literature about code cloning indi-
cate that cloning is harmful and has a negative impact on the

maintainability of software systems. Kapser and Godfrey
examine several large open source systems and show that
cloning is often used as a principled engineering tool [34].
For example, cloning is often used to experiment with new
features while ensuring the stability of the old code. New
features are added in cloned code then re-integrated into the
original code once the features are stabilized.

4 Opportunities in the Road Ahead

In the last section, we gave a brief survey of the impact
of MSR on many important dimensions in software research
and practice. The MSR field is very fortunate in that the cost
of experimenting with MSR techniques is usually low — the
data needed to perform MSR research and to demonstrate
the value of adopting many of the MSR findings is readily
available as it is collected by projects for other purposes. In
the road ahead there exists many opportunities for the MSR
field to demonstrate the strategic importance of software
repositories and the benefit of transforming static software
repositories into active ones which could support and au-
tomate many daily decision-processes in modern software
development organizations. We present below several ar-
eas opportunities and discuss the challenges associated with
these opportunities and work done within the MSR commu-
nity to tackle some of these challenges.

4.1 Taming the Complexity of MSR

MSR techniques remain as advanced techniques with a
large barrier of entry due to the complexities associated with
data extraction and analysis. Although the data needed for
MSR is readily available, the data is not collected with min-
ing in mind. For example, commonly used source control
repositories, such as CVS and subversion, track changes at
the file level instead of tracking changes at the code entity
level (e.g., functions and classes). And CVS, the most used
source control repository, does not track the fact that several
files have co-changed together or the purpose of a change,
e.g., to fix a bug or to merge a code branch.

In the next few years, MSR researchers should focus on
lowering the barrier of entry into the MSR field. Lowering
the barrier of entry will bring in researchers from several
other domains and wider experience, and will raise the di-
versity of the important problems that are being investigated
using software repositories. MSR researchers should work
on documenting best practices for mining repository data,
and on providing access to mining tools and already mined
data in well-defined exchange formats. Early work in ex-
change formats, such as [36], is still not well-adopted Nev-
ertheless there are currently a few toolsets (e.g., [42]) and
datasets (e.g., [2, 19]) that are available for others to use.
The following are a few of the challenges that researchers
must address by providing toolkits and advice for others to
overcome these challenges.



Simplifying the Extraction of High-Quality Data. Many
heuristics are used to extract data from code reposi-
tories (e.g., [24, 67, 18, 49]), from email repositories
(e.g., [8, 56]), and from run-time repositories (e.g., [31]).
Heuristics are used to deal with un-compilable code in
a code repository. Heuristics are used to map a user’s
email to a single individual since users do not have
unique emails over the years or even within the same
day (sending emails from home and work or school
email addresses). Researchers should closely examine,
document, and study the correctness of the used heuris-
tics. Toolkits to help others extract data with limited
knowledge about these heuristics are needed. However
building tools and extracting data from repositories are
time consuming and challenging tasks. There is currently
a lack of proper ways to acknowledge the contributions of
researchers who build tools and provide or share extracted
data. The contributions of these researchers should be
acknowledged as an important and essential contribution
to the MSR field for these researchers and others to tackle
this challenge.

Dealing with Skew in Repository Data. Often the data
available in software repositories exhibits a large amount
of noise and skew in it. For example, the count of changes
and bugs to files tends to have high skew in it with a
small portion of files having most of the bugs or changes
in them. This large skew requires special attention when
using traditional data mining algorithms. For example,
decision tree learners have a high tendency to simply re-
turn the most common category in the data as a prediction
when there most-common-category occurs at a very high
rate. More robust algorithms and data re-sampling tech-
niques should be adopted [45].

Another example of skew exits in source control reposi-
tories with a small number of changes involving most of
the files in a project. For example, each year all files of
a project may be changed together in one large change to
update the copyright year at the top of each file. The use
of such data may lead to incorrect results and conclusions.
MSR researchers should closely study the noise and skew
in the data and better understand their effect on the analy-
sis. Guidelines, techniques and tools are needed to detect
noise and skew, and to accommodate them in the analysis.
Visualization techniques, such as [15, 38, 64] are essential
in helping spot noise and are important tools when min-
ing software repositories. Detailed statistical sampling or
manual (e.g., [29]) analysis may be needed to better un-
derstand the characteristics of the noise and whether it
should be included in the analysis.

Scaling MSR Techniques to Very Large Repositories.
Most MSR techniques have been demonstrated on large
scale software systems. However, the size of data

available for mining continues to grow at a very rapid
rate. More intelligent techniques are needed to handle
such large amount of data. These techniques must
tackle the size and the age of the data. For example,
when analyzing historical repositories, techniques should
explore assigning more weight to recent data over older
data [22].

60

so ] 49%

40

30

20 16%

14%
10%

8%

10 A

Source Code Bug Archived Req. Deploy. Other

Control Comm.

Figure 1. Repositories in MSR publications

Improving the Quality of Repository Data. Researchers
should provide guidelines and tools to practitioners
who are interested in supporting future mining efforts
of their repositories by improving the data entered in
their repository. Lexical heuristics used to determine the
rationale for a change [49] would not be needed, if the
User Interface of source control repository tool would
permit a developer to select the purpose of a change from
a drop-down menu. Similarly, heuristics to determine the
actual change which fixed a particular bug [37] would no
longer be required if developers would simply enter the
bug-id when committing their bug-fix change.

4.2 Going Beyond Code and Bugs

An analysis of the publications at the MSR venue over
the last five years along various types of repositories (see
Figure 1) shows that a large amount (~80%) of the pub-
lished work focuses on source code and bug related reposi-
tories. We believe that this is primarily due to the fact that
the used repositories (e.g., bug repositories or source con-
trol repositories) are commonly available and the structured
nature of source code and bug reports which eases the anal-
ysis. The Figure also shows that documentation repositories
(e.g., requirements) are rarely studied primarily due to the
limited availability of such repositories. The Figure is de-
rived by examining the full and short papers published in
the proceedings of MSR from 2004 to 2008. The Figure
counts all types of repositories used by a particular paper.
For example, a paper may use data from a source control
repository and link it with archived project communication



(e.g., emails), so we mark the paper as using both types of
repositories.

MSR research should expand its analysis beyond struc-
tured data and beyond data in single repository, while tack-
ling the following challenges.

Exploring Non-Structured Data. Although program data
is usually structured, repositories contain unstructured
data such as archived communication repositories which
contain natural language text [56]. Similarly deploy-
ment logs in practice usually do not follow a strict struc-
ture [31]. Although Figure 1 shows that there has been a
large focus on using source control and bug repositories in
papers, their use has shifted in recent years to study other
non-code aspects of these repositories such as analyzing
the social network of software developers who committed
changes or fixed bugs to these repositories. The study of
non-structured data in source control repositories and non-
structured repositories (e.g., archived communications)
continues to rise in popularity with many papers exam-
ining the social and technical aspects of software projects.
As software engineering researchers, our knowledge and
experience with techniques to analyze non-structured data
is limited so we should collaborate closely with experi-
enced researchers, such as as social scientists.

Linking Data Between Repositories. A large amount of
research uses data in a single repository. However the
use and linking of data across different repositories can
help in improving the quality of the data [37] and in pro-
viding practitioners with a more complete view of the
project [12]. Techniques which could accurately link a
bug report, to the email discussions about it, to the logs
for deployments exhibiting it, to test cases which verify
it, and to the actual change which introduced the bug and
the change which fixed it would be very valuable in im-
proving the type of analysis done in the field. Research
should explore the benefits and challenges of linking data
between repositories.

Seeking Non-Traditional Repositories. Figure 1 shows
that around 10% of all publications make use of non-
traditional repositories. Examples of such repositories
are: repositories of build warnings or test results, repos-
itories of programs in large software distributions (e.g.,
Linux distributions), and IDE interaction history. Some
of these repositories, such as IDE interaction history, may
not be currently available; while other repositories,e.g.,
build warnings or test results, may not be commonly avail-
able. The work presented at MSR provides a critical anal-
ysis of the risks and benefits of building or using such
repositories in supporting software research and practice.
As research progresses in the MSR field, researchers and
practitioners should explore other non-traditional (i.e.,

not-commonly available) repositories and demonstrate the
importance of these repositories so others can better un-
derstand the value of creating and maintaining such repos-
itories for their projects.

Understanding the Limitations of Repository Data.
Repository data cannot be used to conclude causation
instead it can only show correlation. MSR findings must
be investigated more closely within the context of the
studied project or system. Project and system context
are very important to reveal the true cause for particular
findings. For example, although an analysis of historical
repositories may show that particular developers are more
likely to perform buggy changes. This may be due to the
fact that they are usually assigned more complex changes
and not due to the skill level of these developers.

Moreover, findings may not generalize across
projects [53] and the use of repositories varies be-
tween different projects. So researchers should closely
examine the project culture to better understand the use
of the repositories before reaching conclusions. For
example, in open source projects a limited number of
developers are given commit rights and they commit code
for other contributors. Therefore an analysis of the source
control repository may incorrectly indicate that there are
a small number of contributors to open source projects
whereas in reality the number of contributors is much
larger [21, 48]. In short, the limitation of repository data
should be closely examined and communicated when
presenting the results of mining research to avoid the
misinterpretation of findings.

4.3 Showing the Value of Repositories

MSR researchers should continue to show and demon-
strate the value of data in software repositories and the bene-
fits of MSR techniques in helping practitioners in their daily
activities. With practitioners seeing the value of the MSR
field, they are more likely to consider adopting MSR tech-
niques in practice. They are also more willing to work on
improving the quality of the data stored in software repos-
itories to ease future data extraction efforts and to improve
the quality of results of mining efforts. The following are a
few of the challenges that MSR researchers must tackle to
demonstrate the value of software repositories.

Understanding the Needs of Practitioners. The effec-
tiveness of MSR techniques should be explored relative
to the needs of practitioners. We should aim to address
problems that are relevant and important to them. For
example, although there exists many techniques to predict
buggy files in large software projects, the value of such
predictions may be low for developers who are usually
well-aware of the most buggy parts of their system.



Similarly bug prediction techniques which predict the
incidence of bugs at the file level, may be too coarse of
a level for practitioners to adopt as they may not add
much to their current knowledge. Metrics which could be
mapped to actual time and money savings, if possible, are
highly desired.

Studying The Performance of Techniques in Practice.
The effectiveness of MSR techniques is often demon-
strated using historical repository data. Once these
techniques are adopted, it is not clear how these pro-
posed techniques would affect the daily activities of
practitioners which in turn would affect the data stored
in the repository. For example, research has shown
that techniques, which use historical code co-changes
to predict other entities which must be co-changed,
perform well. However if such techniques are adopted in
practice, developers may start relying too much on these
techniques to guide them. This high dependence on the
technique will affect the historical co-change data which
the techniques themselves depend on to perform well.

Showing the Practical Benefit of MSR Techniques.
Researchers must not only demonstrate the statistical
benefit and improvement of MSR techniques over tradi-
tional techniques. They must also discuss the practical
benefit and cost of their techniques. For example,
techniques that require a great deal of manual work and
maintenance may be hard to adopt in practice, even if
they outperform other techniques unless the manual work
is a one-time effort.

The performance of most MSR techniques is measured by
demonstrating the performance of the techniques at a par-
ticular point of time. The maintenance efforts needed to
ensure that these techniques keep on performing well is
not studied. A technique which mines historical reposi-
tories may perform well when first adopted. But as the
amount of historical data increases, the technique perfor-
mance may suffer and the technique may require some
calibration. Techniques which can auto-calibrate or which
can at least warn users that they need re-calibration are
needed. Techniques which require minimal intervention
once adopted are highly desirable. Such area of work has
not yet to be explored in the MSR field. However, the
importance of such work is well-recognized in traditional
data mining. For example when mining consumer data,
the shift of demographics or consumers perception should
be accounted for.

Evaluating Techniques on Non Open Source Systems.
MSR researchers continue to demonstrate their tech-
niques on open source system due to their accessability
and availability. The generalization of findings and
techniques to commercial, non-open source systems,

has not be studied. Unfortunately, access to commercial
repositories still remains limited.

4.4 Easing the Adoption of MSR

Although the value of MSR techniques may have been
demonstrated, there are several challenges preventing the
adoption of MSR techniques by practitioners and re-
searchers. Miiller and colleagues have over the past few
years explored many of the challenges associated with
adopting software engineering research in practice (e.g.,
[6]). We discuss below a few of these challenges from
an MSR perspective and we comment on work done in the
MSR community to address some of these challenges.

Simplifying Access to Techniques. MSR Researchers
should simplify the resources and tools needed for prac-
titioners to experiment and use MSR techniques on their
repositories. One option is to integrate MSR techniques
into current toolsets instead of establishing MSR-specific
toolsets. Fortunately, modern development environments
such as Eclipse offer APIs to extend them. HATARI [60],
Hipikat [12], Myln [35], and eROSE [68] are examples
of MSR research along this direction. These tools
integrate within development environments and require
minimal effort for practitioners to use. Another option
is to consider web service for MSR techniques where
repositories can be uploaded for analysis. One possibility
is to use a few large open source projects as guinea pigs,
to demonstrate the functionality of such services and the
benefits of MSR techniques to practitioners.

Helping Practitioners Make Decisions MSR techniques
should not aim for full automation instead they should
aim to create a synergy between practitioners and MSR
techniques. Surprisingly full automation is not always the
most desired option for practitioners. Practitioners prefer
techniques that support their decision-making process in-
stead of replacing them [11]. Practitioners also prefer sim-
ple and easy to understand and rationalize models (e.g.,
decision tree) over better-performing yet complex mod-
els (e.g., genetic algorithms). The simplicity of the mod-
els help practitioners in rationalizing the output of MSR
techniques, and in gaining buy-in by other shareholders in
large projects.

5 Conclusion

Software repositories have traditionally been used for
archival purposes. The MSR field has shown that these
repositories could be mined to uncover useful patterns and
actionable information about software systems and projects.
MSR researchers have proposed techniques which augment
traditional software engineering data, techniques and tools,



in order to solve important and challenging problems, such
as identifying bugs, and reusing code, which practitioners
must face and solve on a daily basis.

In this paper, we presented a brief history of the MSR
field and discussed several recent achievements and results
of using MSR techniques to support software research and
practice. We then explored the various opportunities and
challenges that lie in the road ahead for this important and
emerging field while highlighting work done in the MSR
community to address some of these challenges. For up-
to-date information about the MSR field, please refer to
http://msrconf.org/.

Acknowledgements

The author thanks Stephan Diehl, Daniel German, Zhen
Ming Jiang, Tom Zimmermann, and Ying Zou for their
suggestions on improving the paper and for sharing their
thoughts and ideas. The author gratefully acknowledges the
contributions of the members of the MSR community for
their work and input in helping establish and grow the MSR
community as an important part of Software Engineering.

The MSR community as a whole acknowledges the
significant contributions from the open source community
who assisted our community in understanding and acquir-
ing their valuable software repositories. These repositories
were essential in progressing the state of research in the
MSR field and Software Engineering.

References

[1] Summary of Sarbanes-Oxley Act of 2002.
soxlaw.com/.

http://www.

[2] The PROMISE repository. http://promisedata.org/.

[3]1 Proceedings of the 25th International Conference on Software Engi-
neering, May 3-10, 2003, Portland, Oregon, USA. IEEE Computer
Society, 2003.

[4] Fourth International Workshop on Mining Software Repositories,
MSR 2007 (ICSE Workshop), Minneapolis, MN, USA, May 19-20,
2007, Proceedings. IEEE Computer Society, 2007.

[5] J. Anvik, L. Hiew, and G. C. Murphy. Who should fix this bug? In
Osterweil et al. [54], pages 361-370.

[6] R. Balzer, J. H. Jahnke, M. Litoiu, H. A. Miiller, D. B. Smith, M.-
A. D. Storey, S. R. Tilley, and K. Wong. 3rd International Workshop
on Adoption-centric Software Engineering (ACSE). In ICSE [3],
pages 789-790.

[7]1 V.R. Basili and B. Perricone. Software Errors and Complexity: An
Empirical Investigation. Communications of the ACM, 27(1):42 - 52,
1984.

[8] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and A. Swaminathan.
Mining Email Social Networks. In Proceedings of the 3rd Interna-
tional Workshop on Mining Software Repositories, Shanghai, China,
May 2006.

[9] C. Bird, A. Gourley, P. T. Devanbu, A. Swaminathan, and G. Hsu.
Open Borders? Immigration in Open Source Projects. In MSR [4],
page 6.

[10]

(1]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

A. Chen, E. Chou, J. Wong, A. Y. Yao, Q. Zhang, S. Zhang, and
A. Michail. CVSSearch: Searching through Source Code Using CVS
Comments. In Proceedings of the 17th International Conference on
Software Maintenance, pages 364—374, Florence, Italy, 2001.

J. R. Cordy. Comprehending Reality - Practical Barriers to Industrial
Adoption of Software Maintenance Automation. In IWPC, pages
196-206. IEEE Computer Society, 2003.

D. Cubranic, G. C. Murphy, J. Singer, and K. S. Booth. Hipikat: A
Project Memory for Software Development. IEEE Trans. Software
Eng., 31(6):446-465, 2005.

S. Diehl, H. Gall, and A. E. Hassan, editors. Proceedings of the
2006 International Workshop on Mining Software Repositories, MSR
2006, Shanghai, China, May 22-23, 2006. ACM, 2006.

S. G. Eick, C. R. Loader, M. D. Long, S. A. V. Wiel, and L. G. Votta.
Estimating Software Fault Content Before Coding. In Proceedings
of the 14th International Conference on Software Engineering, pages
59-65, Melbourne, Australia, May 1992.

S. G. Eick, J. L. Steffen, and E. E. Sumner. Seesoft-A Tool For
Visualizing Line Oriented Software Statistics. IEEE Trans. Software
Eng., 18(11):957-968, 1992.

D. R. Engler, D. Y. Chen, and A. Chou. Bugs as Inconsistent Be-
havior: A General Approach to Inferring Errors in Systems Code. In
SOSP, pages 57-72, 2001.

M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S.
Tschantz, and C. Xiao. The Daikon System for Dynamic Detection
of Likely Invariants. Sci. Comput. Program., 69(1-3):35-45, 2007.

M. Fischer, M. Pinzger, and H. Gall. Populating a Release History
Database from Version Control and Bug Tracking Systems. In /CSM,
pages 23—. IEEE Computer Society, 2003.

FLOSSmole. Available
sourceforge.net/.

online at http://ossmole.

H. Gall, K. Hajek, and M. Jazayeri. Detection of Logical Coupling
Based on Product Release History. In Proceedings of the 14th Inter-
national Conference on Software Maintenance, Bethesda, Washing-
ton D.C., Nov. 1998.

D. M. German. An Empirical Study Of Fine-Grained Software Mod-
ifications. Empirical Software Engineering, 11(3):369-393, 2006.

T. L. Graves, A. F. Karr, J. S. Marron, and H. P. Siy. Predicting Fault
Incidence Using Software Change History. IEEE Transactions on
Software Engineering, 26(7):653—-661, 2000.

S. Hangal and M. S. Lam. Tracking Down Software Bugs Using Au-
tomatic Anomaly Detection. In ICSE, pages 291-301. ACM, 2002.

A. E. Hassan. Mining Software Repositories to Assist Developers
and Support Managers. PhD thesis, University of Waterloo, 2004.

A. E. Hassan and R. C. Holt. Predicting Change Propagation in Soft-
ware Systems. In Proceedings of the 20th International Conference
on Software Maintenance, Chicago, USA, Sept. 2004.

A. E. Hassan and R. C. Holt. Using Development History Sticky
Notes to Understand Software Architecture. In Proceedings of
the 12th International Workshop on Program Comprehension, Bari,
Italy, June 2004.

A. E. Hassan, A. Mockus, R. C. Holt, and P. M. Johnson. Guest Ed-
itor’s Introduction: Special Issue on Mining Software Repositories.
IEEE Trans. Software Eng., 31(6):426-428, 2005.

1. Herraiz, J. M. Gonzalez-Barahona, and G. Robles. Towards a The-
oretical Model for Software Growth. In MSR [4], page 21.

A. Hindle, D. M. Germén, and R. C. Holt. What Do Large Commits
Tell Us?: A Taxonomical Study Of Large Commits. In A. E. Hassan,
M. Lanza, and M. W. Godfrey, editors, MSR, pages 99-108. ACM,
2008.


http://msrconf.org/
http://www.soxlaw.com/
http://www.soxlaw.com/
http://promisedata.org/
http://ossmole.sourceforge.net/
http://ossmole.sourceforge.net/

(30]

[31]

(32]

[33]

(34]

[35]

[36]

(371

(38]

(391

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

J. P. Hudepohl, S. J. Aud, T. M. Khoshgoftaar, E. B. Allen, and
J. Mayrand. Emerald: Software Metrics and Models on the Desk-
top. Computer, 13(5), 1996.

Z. M. Jiang, A. E. Hassan, P. Flora, and G. Hamann. Automatic
Identification of Load Testing Problems. In Proceedings of the 24th
International Conference on Software Maintenance, Beijing, China,
Sept. 2008.

H. H. Kagdi, M. L. Collard, and J. I. Maletic. A survey and taxon-
omy of approaches for mining software repositories in the context of
software evolution. Journal of Software Maintenance, 19(2):77-131,
2007.

H. H. Kagdi, J. I. Maletic, and B. Sharif. Mining software reposito-
ries for traceability links. In /ICPC, pages 145-154. IEEE Computer
Society, 2007.

C. Kapser and M. W. Godfrey. “Cloning Considered Harmful” Con-
sidered Harmful. In WCRE, pages 19-28. IEEE Computer Society,
2006.

M. Kersten and G. C. Murphy. Mylar: A Degree-of-interest Model
for IDEs. In M. Mezini and P. L. Tarr, editors, AOSD, pages 159-168.
ACM, 2005.

S. Kim, T. Zimmermann, M. Kim, A. E. Hassan, A. Mockus,
T. Girba, M. Pinzger, J. Whitehead, and A. Zeller. TA-RE: An Ex-
change Language for Mining Software Repositories. In Diehl et al.
[13], pages 22-25.

S. Kim, T. Zimmermann, K. Pan, and J. Whitehead. Automatic Iden-
tification of Bug-Introducing Changes. In ASE, pages 81-90. IEEE
Computer Society, 2006.

M. Lanza and S. Ducasse. Polymetric Views — A Lightweight Vi-
sual Approach to Reverse Engineering. IEEE Trans. Software Eng.,
29(9):782-795, 2003.

M. M. Lehman, J. F. Ramil, P. Wernick, D. E. Perry, and W. M.
Turski. Metrics and Laws of Software Evolution - The Nineties View.
In IEEE METRICS, pages 20—. IEEE Computer Society, 1997.

Z.Li, S. Lu, S. Myagmar, and Y. Zhou. CP-Miner: Finding Copy-
Paste and Related Bugs in Large-Scale Software Code. IEEE Trans.
Software Eng., 32(3):176-192, 2006.

Z.Liand Y. Zhou. PR-Miner: Automatically Extracting Implicit Pro-
gramming Rules and Detecting Violations in Large Software Code.
In Wermelinger and Gall [62], pages 306-315.

LibreSoft tools web site. Available online at http://tools.

libresoft.es/.

V. B. Livshits and T. Zimmermann. DynaMine: Finding Common
Error Patterns By Mining Software Revision Histories. In Wer-
melinger and Gall [62], pages 296-305.

S. Lu, S. Park, C. Hu, X. Ma, W. Jiang, Z. Li, R. A. Popa, and
Y. Zhou. MUVI: Automatically Inferring Multi-Variable Access Cor-
relations and Detecting Related Semantic and Concurrency Bugs. In
T. C. Bressoud and M. E. Kaashoek, editors, SOSP, pages 103-116.
ACM, 2007.

H. Malik and A. E. Hassan. Supporting Software Evolution Using
Adaptive Change Propagation Heuristics. In Proceedings of the 24th
International Conference on Software Maintenance, Beijing, China,
Sept. 2008.

D. Mandelin, L. Xu, R. Bodik, and D. Kimelman. Jungloid Mining:
Helping to Navigate the API Jungle. In V. Sarkar and M. W. Hall,
editors, PLDI, pages 48—61. ACM, 2005.

A. Michail and T. Xie. Helping Users Avoid Bugs in GUI Applica-
tions. In Roman et al. [58], pages 107-116.

A. Mockus, R. T. Fielding, and J. D. Herbsleb. A Case Study of Open
Source Software Development: the Apache Server. In Proceedings of

the 22nd International Conference on Software Engineering, pages
263-272, Limerick, Ireland, June 2000. ACM Press.

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

(571

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

A. Mockus and L. G. Votta. Identifying Reasons for Software
Changes using Historic Databases. In ICSM, pages 120-130, 2000.

A. Mockus, D. M. Weiss, and P. Zhang. Understanding and Predict-
ing Effort in Software Projects. In ICSE [3], pages 274-284.

A. Mockus, P. Zhang, and P. L. Li. Predictors Of Customer Perceived
Software Quality. In Roman et al. [58], pages 225-233.

R. Moser, W. Pedrycz, and G. Succi. A Comparative Analysis Of
The Efficiency Of Change Metrics And Static Code Attributes For
Defect Prediction. In Robby, editor, /CSE, pages 181-190. ACM,
2008.

N. Nagappan, T. Ball, and A. Zeller. Mining Metrics to Predict Com-
ponent Failures. In Osterweil et al. [54], pages 452-461.

L. J. Osterweil, H. D. Rombach, and M. L. Soffa, editors. 28th Inter-
national Conference on Software Engineering (ICSE 2006), Shang-
hai, China, May 20-28, 2006. ACM, 2006.

D. E. Perry and W. M. Evangelist. An Empirical Study of Software
Interface Errors. In Proceedings of the International Symposium on
New Directions in Computing, pages 32-38, Trondheim, Norway,
Aug. 1985.

P. C. Rigby and A. E. Hassan. What Can OSS Mailing Lists Tell Us?
A Preliminary Psychometric Text Analysis of the Apache Developer
Mailing List. In MSR [4], page 23.

G. Robles, J. J. Amor, J. M. Gonzilez-Barahona, and I. Herraiz. Evo-
lution and Growth in Large Libre Software Projects. In IWPSE, pages
165-174. IEEE Computer Society, 2005.

G.-C. Roman, W. G. Griswold, and B. Nuseibeh, editors. 27th Inter-
national Conference on Software Engineering (ICSE 2005), 15-21
May 2005, St. Louis, Missouri, USA. ACM, 2005.

J. S. Shirabad. Supporting Software Maintenance by Mining Software
Update Records. PhD thesis, University of Ottawa, 2003.

J. Sliwerski, T. Zimmermann, and A. Zeller. HATARI: Raising Risk
Awareness. In Wermelinger and Gall [62], pages 107-110.

L. Tan, X. Zhang, X. Ma, W. Xiong, and Y. Zhou. AutoISES: Auto-
matically Inferring Security Specifications and Detecting Violations.
In Proceedings of the 17th USENIX Security Symposium (USENIX
Security "08), July-August 2008.

M. Wermelinger and H. Gall, editors. Proceedings of the 10th
European Software Engineering Conference held jointly with 13th
ACM SIGSOFT International Symposium on Foundations of Soft-
ware Engineering, 2005, Lisbon, Portugal, September 5-9, 2005.
ACM, 2005.

C. C. Williams and J. K. Hollingsworth. Automatic Mining of Source
Code Repositories to Improve Bug Finding Techniques. IEEE Trans.
Software Eng., 31(6):466—480, 2005.

J. Wu, R. C. Holt, and A. E. Hassan. Exploring Software Evolu-
tion Using Spectrographs. In WCRE, pages 80-89. IEEE Computer
Society, 2004.

T. Xie and J. Pei. MAPO: Mining API Usages From Open Source
Repositories. In Diehl et al. [13], pages 54-57.

A. T. T. Ying, G. C. Murphy, R. T. Ng, and M. Chu-Carroll. Pre-
dicting source code changes by mining change history. IEEE Trans.
Software Eng., 30(9):574-586, 2004.

T. Zimmermann and P. Weifigerber. Preprocessing CVS Data for
Fine-Grained Analysis. In Proceedings of the 1st International Work-
shop on Mining Software Repositories, Edinburgh, UK, May 2004.

T. Zimmermann, P. WeiBigerber, S. Diehl, and A. Zeller. Mining
Version Histories to Guide Software Changes. IEEE Trans. Software
Eng., 31(6):429-445, 2005.


http://tools.libresoft.es/
http://tools.libresoft.es/

	1 Introduction
	2 A Brief History of the Mining Software Repositories (MSR) Field
	3 An Overview of MSR Achievements
	3.1 Understanding Software Systems
	3.2 Propagating Changes
	3.3 Predicting and Identifying Bugs
	3.4 Understanding Team Dynamics
	3.5 Improving the User Experience
	3.6 Reusing Code
	3.7 Automating Empirical Studies

	4 Opportunities in the Road Ahead
	4.1 Taming the Complexity of MSR
	4.2 Going Beyond Code and Bugs
	4.3 Showing the Value of Repositories
	4.4 Easing the Adoption of MSR

	5 Conclusion

