
Detecting Performance Anti-patterns for Applications
Developed using Object-Relational Mapping

Tse-Hsun Chen1, Weiyi Shang1, Zhen Ming Jiang2, Ahmed E. Hassan1

Mohamed Nasser3, Parminder Flora3

Queen’s University1, York University2, BlackBerry3, Ontario, Canada

{tsehsun, swy, ahmed}@cs.queensu.ca1, zmjiang@cse.yorku.ca2

ABSTRACT
Object-Relational Mapping (ORM) provides developers a
conceptual abstraction for mapping the application code to
the underlying databases. ORM is widely used in industry
due to its convenience; permitting developers to focus on de-
veloping the business logic without worrying too much about
the database access details. However, developers often write
ORM code without considering the impact of such code on
database performance, leading to cause transactions with
timeouts or hangs in large-scale systems. Unfortunately,
there is little support to help developers automatically de-
tect suboptimal database accesses.

In this paper, we propose an automated framework to de-
tect ORM performance anti-patterns. Our framework auto-
matically flags performance anti-patterns in the source code.
Furthermore, as there could be hundreds or even thousands
of instances of anti-patterns, our framework provides sup-
port to prioritize performance bug fixes based on a statis-
tically rigorous performance assessment. We have success-
fully evaluated our framework on two open source and one
large-scale industrial systems. Our case studies show that
our framework can detect new and known real-world perfor-
mance bugs and that fixing the detected performance anti-
patterns can improve the system response time by up to
98%.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging;
C.4 [Performance Of Systems]: [Performance Anti-patterns]

General Terms
Performance

Keywords
Performance, Performance Anti-pattern, Static, Dynamic
Analysis, Performance Evaluation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’14, May 31 – June 7, 2014, Hyderabad, India
Copyright 14 ACM 978-1-4503-2756-5/14/05 ...$15.00.

1. INTRODUCTION
Object-Relational Mapping (ORM) provides developers a

conceptual abstraction for mapping database records to ob-
jects in object-oriented languages. Through such mapped
objects, developers can access database records without wor-
rying about the database access and query details. For ex-
ample, developers can call user.setName(“Peter”) to update
a user’s name in a database table. As a result, ORM gives
developers a clean and conceptual abstraction for mapping
the application code to the database. Such abstraction sig-
nificantly reduces the amount of code that developers need
to write [1, 2].

ORM is widely used in practice as it significantly reduces
the overhead of bridging business logic and database [3].
Since Java 5, Java has included a standard persistence API
(called JPA) that supports ORM. There are many different
implementations of JPA available, such as Hibernate [4] and
Apache OpenJPA [5]. ORM’s popularity is not only limited
to Java, but also other programming languages such as C#,
Ruby, and VB.Net provide ORM abstraction [3, 6].

Despite ORM’s advantages, it may introduce potential
performance problems. Developers may not be aware which
source code snippets would result in a database access nor
whether such access is inefficient. Thus, developers would
not proactively optimize the database access performance.
For example, code that is efficient in memory (e.g., loops)
may cause database performance problems when using ORM
due to data retrieval overheads. In addition, developers usu-
ally only test their code on a small scale (e.g., unit tests),
while performance problems would often surface at larger
scales and may result in transaction timeouts or even hangs.
Therefore, detecting and understanding the impact of such
potential performance overhead is important for develop-
ers [7].

In this paper, we propose an automated framework, which
detects the ORM performance anti-patterns. Our frame-
work can detect hundreds of instances of ORM performance
anti-patterns based on static code analysis. Furthermore, to
cope with the sheer number of the detected anti-patterns,
our framework provides suggestions to prioritize bug fixes
based on a statistically rigorous performance assessment (im-
provement in response time if the detected anti-patterns are
addressed).

The main contributions of this paper are:

• This is the first work that proposes a systematic and
automated framework to detect and assess performance
anti-patterns for applications developed using ORM.

�������
���	
���������������������
����������		�
�������

����
���
���������	
��������	��
�����������������������

�������������	
����������	��
�������������������������

������������������	
�����	��
���
�������
�����������

����������	������������������������

�������

�����	��
���������������������
� �	!�����������"�����

#
!!!��� �������������	������$�����	

#

�������

��������	�
�

�����
�����������������������

���������
�������

���������
����

������������������������	
�����	�
���
�������
������������

����������	������������������������

��������	�
����������
�� ��������	�
������������

�������
��	�
�

$����
�������%��������	���
�!���
������������

#

$����
�������%��������	���
$��������������%�!����������������

�!�������������������
#

#

���������	�
�

	������������������������ ���������������
& ������������"'
	������������������������ ���������������
& ������������"(
!!!

����������	
�
��� �������

	�������������& ������������"'
	�������������& ������������"(
!!!

����������	
�
�! "������

	�����������������	���& ����
�!���������"�'
	�����������������	���& ����
�!���������"�(
!!!

	�����������������	���& ����
�!������������')�()�!!!�
!!!

�������������	�
��
��������
��

�������������	�
�

���

���

���

���

�������������	�
� �������������	�
������������

��������#��

������������� �������

�����������! "������

��������	
���
�

����������������

�����������������������

���������	�
�
�����������

����������� ���
������������������������	
�����	�

���
�������
�����������
��������!!������������"����#$#���
������������ !�"�#�"����$%�

����������	������������������������

Figure 1: A motivating example. (1) shows the original class files and the ORM configurations; (2) shows
the modified Company.java, the excessive data application code, and the resulting SQLs; and (3) shows the
modified Company.java, the one-by-one processing application code, and the resulting SQLs.

• Our framework provides a practical and statistically
rigorous approach to prioritize the detected perfor-
mance anti-patterns based on the expected performance
gains (i.e., improvement in response time). The prior-
itization of detected anti-patterns is novel relative to
prior anti-pattern detection efforts ([8, 9, 10, 11, 12]).

• Through case studies on two open source systems (Pet-
Clinic [13] and BroafLeaf commence [14]) and one large-
scale enterprise system (EA), we show that our frame-
work can find existing and new performance bugs. Our
framework, which has received positive feedbacks from
the EA developers, is currently being integrated into
the software development process to regularly scan the
EA code base.

Paper Organization The rest of this paper is organized
as follows. Section 2 provides motivating examples of the
performance impact of anti-patterns. Section 3 describes our
framework for detecting and prioritizing performance anti-
patterns. Section 4 discusses the results of our case study.
Section 5 provides some discussions on the detected anti-
patterns and presents some future work. Section 6 describes
the threats to validity. Section 7 surveys the related work.
Finally, Section 8 concludes the paper.

2. MOTIVATING EXAMPLES
In this section, we present realistic examples to show how

such ORM performance anti-patterns may affect the perfor-
mance of a system. We develop a simple Java program as
an illustration (Figure 1 (1)). The program manages a re-
lationship between two classes (Company and Department),
and provides a set of getter and setter functions to access
and change the corresponding DB columns (e.g, setCompa-
nyName).

In this example, there is a one-to-many relationship be-
tween Company and Department, i.e., one company can have

multiple departments. This relationship is represented using
annotation @OneToMany on the instance variable depart-
ment in Company.java and @ManyToOne on the instance
variable company in Department.java (details not shown
in Figure 1 but very similar to Company.java). @Col-
umn shows which database column the instance variable
is mapped to (e.g., companyId maps to column company id),
and @Entity shows that the class is a database entity class
which maps to the database table specified in @Table (e.g.,
Company class maps to company table).

Fetch type in ORM, which can be either LAZY or EA-
GER, determines how the data of a java object is retrieved
from the database. Using Company.java in Figure 1 as an
example, a fetch type of EAGER means that department ob-
jects are always fetched from the database when a company
object is initialized (i.e., calling new Company()) even when
department objects might never be needed. On the other
hand, a fetch type of LAZY means that department objects
are retrieved only when their information is used (e.g., when
calling department.getDepartmentName()).

In the following subsections, we discuss how the perfor-
mance anti-patterns may affect system performance, and
show the performance difference before and after fixing the
anti-patterns. We focus on the following two performance
anti-patterns that are commonly seen in real-world code [15,
16] and that can possibly cause serious performance prob-
lems: (1) Excessive data, which retrieves unused/unneces-
sary data from the database; and (2) One-by-One Process-
ing, which repeatedly performs similar database operations
in loops [17]. In this paper, we focus our study on JPA,
which is a very popular ORM standard API for Java.

2.1 Excessive Data
Developers may set the relationship between two database

entity classes to EAGER if the two classes are always asso-
ciated together (e.g., accessing class Company will always
lead to an access to class Department). In such cases, set-

������
����

	
�
����
�����

�������
����
����
�
���������������

�������
����

���������Annotated global

call graph and
data ���� graph

�������
����

�����
������

Ranked
performance
anti-patterns

Figure 2: Overview of our ORM performance anti-pattern detection and prioritization framework.

ting the relationship to EAGER may improve performance
by retrieving two database entity objects from the database
in one SQL statement using a join. However, such an EA-
GER fetch is not optimal if the eagerly retrieved data is
never used.

Figure 1 (2) shows an example of the excessive data anti-
pattern. Excessive.java shows an application program
that accesses the name of all the companies. If we exe-
cute Excessive.java using the ORM configurations in Com-

pany.java (Excessive), it would generate SQL statements
to retrieve both company objects as well as department ob-
jects from the database due to the EAGER setting on the
department instance variable in Company.java, even though
we do not access Department objects in Excessive.java.
One way to fix this performance anti-pattern is to change
the fetch type from EAGER to LAZY (the original setting
in Company.java).

To demonstrate the performance impact of excessive data,
we run the program shown in Figure 1 (2). We populate
the database with 300 records in the Company table and
10 records of Department for each record in the Company
table. The response time before fixing Excessive.java is
1.68 seconds; fixing the performance anti-pattern reduces
the response time to 0.48 seconds (a 71% improvement).

2.2 One-by-one Processing
Figure 1 (3) shows an example of the one-by-one process-

ing anti-pattern. The one-by-one processing anti-pattern is
a special case of the Empty Semi Trucks anti-pattern [17],
which occurs when a large number of requests is needed to
perform a task. In this paper, we study the effect of such
anti-pattern in the ORM context. OneByOne.java shows an
application program that iterates through all the companies
(companyList), and finds the names of all the departments in
each company. If we execute OneByOne.java using the same
ORM configurations in Company.java, it would generate one
select department statement for each company object.

One way to solve this particular issue is to change the
ORM configuration for retrieving department objects to the
configuration in Company.java (OneByOne). After adding a
batch size (e.g., @BatchSize(size=50)) to the instance vari-
able department, ORM will select 50 department objects in
each batch. The fix reduces the number of SQL statements
significantly, and could help improve the database perfor-
mance. Note that the fix for one-by-one processing may
vary in different situations (e.g., doing database updates in
loops) and can be sometimes difficult. Section 6 has more
discussions regarding this issue.

To demonstrate the performance impact of one-by-one
processing, we run the program shown in Figure 1 (3) with
the same populated database as in Section 2.1. The response
time before fixing the anti-pattern is 1.68 seconds, and the
response time after the fix is 1.39 seconds (a 17% improve-
ment).

Our motivating examples show that there is a significant
performance improvement even in simple sequential database
read operations after fixing both performance anti-patterns.

3. OUR FRAMEWORK
This section describes our framework for detecting and

prioritizing ORM performance anti-patterns. As shown in
Figure 2, our framework consists of three phases: Data Ex-
traction Phase, Performance Anti-pattern Detection phase
and Performance Assessment phase. We first extract all the
code paths, which involve database accesses. Then, we de-
tect the performance anti-patterns among these database-
accessing code paths. Finally, we perform a statistically
rigorous performance assessment so that developers can pri-
oritize the performance bug fixes among hundreds of anti-
patterns. In the rest of this section, we explain these three
phases in detail. We use the example in Section 2 to illus-
trate our approach.

3.1 Data Extraction
In this phase, we identify all the code paths, which involve

database accesses. For each source code file, we extract the
local call graphs, database-accessing functions, and ORM
configurations (Section 3.1.1). Then, we combine the in-
formation from all the files and identify code paths (i.e.,
scenarios), which involve database accesses (Section 3.1.2).

3.1.1 Extracting Database-accessing Functions, Lo-
cal Call Graphs, and ORM Configurations

We first extract the call graphs and data flows in each file,
then we identify all ORM-related information such as anno-
tations and configurations. As shown in Section 2, ORM
uses annotations to annotate a Java class as a database en-
tity class or to setup different data retrieving strategies and
configurations. We store the information about the ORM
configuration of each database entity class and database in-
stance variable, and identify functions that could result in
database accesses. Using Figure 1 as an example, we store
the relationship between Company and Department as one-
to-many. We also mark the getter and setter functions (e.g.,
setDepartmentName), which access or modify database in-
stance variables as database-accessing functions.

3.1.2 Identifying Database-accessing Code Paths
We identify the code paths which involve database ac-

cesses. We accomplish this by:

1) Constructing Global Call and Data Flow Graphs:
We build a global call graph for all the functions and we
keep track of each object’s data usage during its lifetime.
Since functions in object-oriented languages are usually in-
voked through polymorphism, we connect the function call
graphs using the corresponding functions in the subclasses
for abstract classes or the implemented class for interfaces.

2) Marking Database-accessing Code Paths and Data
Flows Using Taint Analysis: We use taint analysis, com-
monly used in computer security [18], to identify code paths
and data flows, which involve database accesses. Taint anal-
ysis keeps track of a possibly malicious variable (e.g., vari-
able V), and if V is used in an expression to manipulate an-
other variable M, M is also considered suspicious. Similarly,
if a function in a call path contains a database-accessing

function that is determined by the first step, we mark all
the functions in the code path as database-accessing func-
tions. For example, in a call path, function A calls func-
tion B and function B calls function C. If function C is a
database-accessing function, we consider the code path of A
→ B → C as a database-accessing code path. We perform
taint analysis statically by computing the node reachability
across functions in the global function call graph.

3.2 Performance Anti-pattern Detection
With identified database-accessing code paths and data

flows, we use a rule-based approach to detect ORM per-
formance anti-patterns. Different anti-patterns are encoded
using different rules. In this paper, we focus on detecting
two of the most pervasive ORM anti-patterns, but new anti-
patterns can be integrated to the framework by adding new
detection rules. Section 5 has more discussions about ex-
tending our framework.

Detecting Excessive Data Anti-patterns: When a data-
base entity object is initialized, a database call is invoked to
retrieve the required information. Therefore, we use point-
to analysis to first identify the variables that point to the
database entity object. Then, we analyze the data flow of
the object to detect excessive data. If a database entity ob-
ject does not use any of the eagerly retrieved information
during its lifetime (identified by traversing the data flow
graph), we report the object usage as an instance of perfor-
mance anti-pattern.

Detecting One-by-one Processing Anti-patterns: To
detect one-by-one processing anti-patterns, the framework
first identifies the functions that are directly called within
both single and nested loops (we consider all kinds of loops,
such as for, while, foreach, and do while). If a directly-called
function is a database-accessing function, the framework
simply reports it as an one-by-one processing anti-pattern.
The framework also traverses all the child nodes in the func-
tion call graphs of the functions that are called in loops. We
analyze the child nodes across multiple functions, and de-
termine whether there is a node in the call graph that may
access the database. If so, the framework reports the call
path that contains the node as an instance of one-by-one
processing anti-pattern.

Due to ORM configurations, some database-accessing func-
tions may not always access the database. In such cases, we
do not report them as anti-patterns. For example, if Depart-
ment is eagerly retrieved by Company, retrieving Company
will automatically retrieve Department. Therefore, access-
ing Department through Company in a loop will not result
in additional database accesses, and will not be reported by
our framework. If a database-accessing function in a loop
is already being optimized using some ORM configurations
(i.e., fetch plan is eitherBatch, SubSelect, or Join) [19],
we do not identify it as a performance anti-pattern.

3.3 Performance Assessment
Previous performance anti-pattern detection studies gen-

erally treat all the detected anti-patterns the same and do
not provide methodologies for prioritizing the anti-patterns
[8, 9, 10, 11, 12]. However, as shown in the case studies (Sec-
tion 4), there could be hundreds or thousands of performance
anti-pattern instances. Hence, it is not feasible for develop-
ers to address them all in a timely manner. Moreover, some
instances of anti-patterns may not be worth fixing due to

the high cost of the fix and the small performance improve-
ment. For example, if a one-by-one processing anti-pattern
always processes a table with just one row of data, there is
little improvement in fixing this particular anti-pattern.

In this phase, we assess the performance impact of the
detected anti-patterns through statistically rigorous perfor-
mance evaluations. The assessment result may not be the ac-
tual performance improvement after fixing the anti-patterns,
but may be used to prioritization the fixing efforts. We re-
peatedly measure and compare the system performance be-
fore and after fixing the anti-patterns by exercising the read-
ily available test suites. Anti-patterns, which are expected
to have big performance improvements (e.g., 200% perfor-
mance improvement) after the fixes, will result in higher
priorities. The rest of this subsection explains the three in-
ternal parts in performance assessment phase: (1) exercising
performance anti-patterns and calculating test coverage, (2)
assessing the performance improvement after fixing the anti-
patterns, and (3) statistically rigorous performance evalua-
tions.

Part 1 - Exercising performance anti-patterns and
calculating test coverage

One way to measure the impact of performance anti-patterns
is to evaluate each anti-pattern individually. However, since
system performance is highly associated with run-time con-
text and input workloads [12, 20, 21], we need to assess the
impact of performance anti-patterns using realistic scenarios
and workloads.

Since performance anti-patterns are detected in various
software components, it is difficult to generate workflows to
exercise all the performance anti-patterns manually. There-
fore, we use the readily available performance test suites
to exercise the performance anti-patterns. For the systems
that do not have performance test suites, we use integration
test suites as an alternate choice. Although integration test
suites may not be designed for testing performance critical
parts of a system, they are designed to test various features
in a system (i.e., use case tests), which may give a better test
coverage. In short, performance and integration test suites
group source code files that have been unit tested into larger
units as suites (e.g., features or business logic), which better
simulate system workflows and user behaviours [22].

Since we do not have control over which instances of per-
formance anti-patterns are exercised by executing the test
suites, it is important to know how many performance anti-
patterns are covered by the tests. We use a profiler to profile
the code execution paths of all the tests, and use the execu-
tion path to calculate how many instances of performance
anti-patterns are covered in the tests.

Part 2 - Assessing performance improvement after
fixing anti-patterns

In this part, we describe our methodology to assess the
performance improvement of fixing the excessive data and
one-by-one processing anti-patterns.

Assessing the excessive data anti-patterns: The eager-fetch
setting may be necessary in some situations to improve per-
formance, but may cause performance degradation when
the retrieved data is not used. We fix excessive data anti-
patterns by fixing the source code (i.e., change the fetch
type from EAGER to LAZY where appropriate). Finally,
we measure and compare the system performance before and
after fixing the excessive data anti-patterns.

Assessing the one-by-one processing anti-patterns: Fixing
one-by-one processing can be much more complicated than
what we have shown in Section 2. One common fix to one-
by-one processing is using batches. However, for example,
performing a batch insert to the Department table in ORM
may require writing specific ORM SQL queries, such as “in-
sert into Department (name) values (’department1’), (’de-
partment2’) ... ”, to replace ordinary ORM code. As a re-
sult, manually fixing the anti-patterns of one-by-one process-
ing requires a deep knowledge about a system’s structure,
design and APIs. Due to the complexity, it is very difficult
to fix all the detected one-by-one processing anti-patterns
automatically. Therefore, we follow a similar methodology
by Jovic et al. [23] to assess the anticipated system perfor-
mance after fixing the one-by-one processing anti-patterns.

As shown in Section 2, the slow performance in the one-
by-one processing anti-patterns is mainly attributed to the
inefficiency in the generated SQL statements. The one-
by-one processing anti-patterns in ORM generate repeti-
tive SQL statements with minor differences. The repeti-
tive SQL statements can be optimized using batches, which
reduce a large amount of query preparation and transmis-
sion overheads. Therefore, the performance measure for ex-
ecuting the optimized SQL statements could be a good es-
timate for the anticipated system performance after fixing
the one-by-one processing anti-patterns. To obtain the gen-
erated SQL statements, we use a SQL logging library called
log4jdbc [24] to log the SQL statements and SQL parameter
values. log4jdbc simply acts as an intermediate layer between
JDBC to the database, which relays the SQL statements to
the database and outputs the SQL statements to log files.

We detect the repetitive SQL statements generated by
ORM, and execute the SQL statements in batches using
Java Database Connectivity (JDBC), which assess the per-
formance impact after fixing the performance anti-pattern.
Note that since JDBC does not support batch operations for
select, we exclude select in our assessment. We execute the
original non-optimized and optimized SQL statements sepa-
rately and compare the performance differences in terms of
response time.

Part 3 - Statistically rigorous performance evalua-
tion

Performance measurements suffer from instability, and may
lead to incorrect results if not handled correctly [25, 26, 27].
Thus, a rigorous study is required when doing performance
measurements [25]. Therefore, our framework does repeated
measurement and computes effect sizes of the performance
improvement (i.e., quantifies the increase in response time
statistically) to overcome the instability problem.

Repeated measurements: Georges et al. [26] recommend
computing a confidence interval for repeated performance
measurements when doing performance evaluation, since per-
formance measurements without providing measures of vari-
ation may be misleading and incorrect [25]. We repeat the
performance tests > 30 times (as suggested by Georges et
al.), and record the response time before and after doing
fixes. We use Student’s t-test to examine if the improvement
is statistically significant different (i.e., p-value < 0.05). A
p-value < 0.05 means that the difference between two dis-
tributions is likely not by chance. Then, we compute the
mean response time and report the 95% confidence interval.
A t-test assumes that the population distribution is nor-
mally distributed. According to the central limit theorem

our performance measures will be approximately normally
distributed if the sample size is large enough [26, 28].

Effect size for measuring the performance impact: We con-
duct a rigorous performance improvement experiment by
using effect sizes [29, 30]. Unlike t-test, which only tells
us if the differences of the mean between two populations
are statistically significant, effect sizes quantify the differ-
ence between two populations. Researchers have shown that
reporting only the statistical significance may lead to erro-
neous results [30] (i.e., if the sample size is very large, p-value
can be small even if the difference is trivial).

We use Cohen’s d to quantify the effects [30]. Cohen’s d
measures the effect size statistically, and has been used in
prior engineering studies [30, 31]. Cohen’s d is defined as:

Cohen’s d =
x̄1 − x̄2

s
, (1)

where x̄1 and x̄2 are the mean of two populations, and s is
the pooled standard deviation [32].

The strength of the effects and the corresponding range
of Cohen’s d values are[33]:

effect size =

trivial if Cohen’s d ≤ 0.2
small if 0.2 < Cohen’s d ≤ 0.5
medium if 0.5 < Cohen’s d ≤ 0.8
large if 0.8 < Cohen’s d

We output the performance anti-patterns, ranked by their
effect sizes, in an HTML report. This report has two parts:
(1) the database entity objects that have excessive data; (2)
the database-assessing functions and the code path of the
detected one-by-one processing anti-patterns.

4. CASE STUDY
In this section, we apply our framework on two open

source systems (PetClinic and BroafLeaf commence) and
one large-scale closed-source enterprise system (EA). We
seek to answer the following two research questions:

RQ1: What is the performance impact of the detected anti-
patterns?

RQ2: How do performance anti-patterns affect system per-
formance at different input scales?

Each research question is organized into three sections: Mo-
tivation, Approach and the Results. Table 1 shows the
statistics of the studied systems.

All of our studied systems use JPA for ORM and follow
the “Model-View-Controller” design pattern [34]. Pet Clinic
is a sample open source system developed by the Spring
Framework [35], which aims to provide a simple yet realis-
tic design of a web application. Broadleaf is a large open
source e-commerce system that is used in many commercial
companies worldwide for building online transaction plat-
forms. EA supports a large number of users concurrently
and is used by millions of users worldwide on a daily ba-
sis. We sought to use open source systems, in addition to
the commercial system, so others can verify our findings and
replicate our experiments on the open source systems, as we
are not able to provide access to the EA.

RQ1: What is the performance impact of the
detected anti-patterns?
Motivation: System performance is highly associated with
run-time context and input workloads [12, 20, 21]. Rarely

Table 2: Performance assessment result for excessive data and one-by-one processing. Tests with p-value <
0.05 have statistically significant performance improvement (marked in bold). Numbers in the parentheses
are the percentage reduction in response time.

(a) Excessive Data

System Test Case No. Excessive µ Before (sec) µ After (sec) Statistical Significance Effect size
Description Data Covered (p-value)

Pet Clinic Browsing 2 130.09±2.04 2.04±0.05 (-98%) <<0.001 42.41 (large)

Broadleaf

Customer Phone 36 2.17±0.21 2.17±0.36 (0%) 0.99 0.00 (trivial)
Offer Service 30 2.38±0.50 2.1±0.19 (-25%) 0.37 0.23 (small)
Shopping Cart 29 22.90±1.74 20.14±0.48 (-12%) <0.05 0.78 (medium)
Checkout 69 30.75±0.27 25.75±0.29 (-16%) <<0.001 6.45 (large)
Customer Addr. 39 3.85±0.17 3.68±0.31 (-4%) 0.35 0.23 (small)
Customer 28 2.08±0.39 1.95±0.33 (-6%) 0.62 0.12 (trivial)
Order 57 30.60±0.35 25.62±0.31 (-16%) <<0.001 5.39 (large)
Offer 24 1.16±0.39 0.92±0.28 (-21%) 0.30 0.21 (small)
Payment Info 33 2.18±0.30 2.20±0.42 (+1%) 0.93 0.02 (trivial)

EA Multiple Features > 10 — improved by 5% < 0.05 0.68 (medium)

(b) One-by-one Processing

System Test Case No. One-by-one µ Before (sec) µ After (sec) Statistical Significance Effect size
Description Processing (p-value)

Covered

Broadleaf

Customer Phone 61 1.00±0.30 1.09±0.33(-0.09%) 0.68 0.10 (trivial)
Offer Service 67 1.23±0.47 1.08±0.34(-12%) 0.60 0.13 (trivial)
Shopping Cart 52 21.46±1.64 14.58±0.42(-32%) <<0.001 2.07(large)
Checkout 109 13.25±0.30 10.63±0.66(-20%) <<0.001 1.86 (large)
Customer Addr. 61 1.49±0.33 1.08±0.10(-27%) <0.05 0.59 (medium)
Customer 61 1.11±0.42 0.95±0.32(-15%) 0.54 0.15 (trivial)
Order 104 13.12±0.27 10.20±0.18(-22%) <<0.001 4.54 (large)
Offer 62 1.23±0.56 0.95±0.25(-22%) 0.37 0.23 (small)
Payment Info 61 1.08±0.31 1.16±0.38(+8%) 0.74 0.08 (trivial)

EA Multiple Features > 10 — improved by 69% <<0.001 55.3 (large)

Table 1: Statistics of the studied systems and num-
ber of detected anti-pattern instances.

Total lines No. of No. of 1-by-1 No. of
of code (K) files processing excessive data

Pet Clinic 3.3K 51 0 10
Broadleaf 3.0 206K 1,795 228 483
EA > 300K > 3,000 >10 >10

or never executed anti-patterns would have less performance
impact compared to frequently-executed ones. Therefore,
we use test suites to assess the performance impact instead
of executing the anti-patterns individually. In this research
question, we want to detect and prioritize performance anti-
patterns by exercising different features of a system using
our proposed framework (Section 3).

Approach: Since performance problems are usually re-
vealed under large data sizes [20, 36], we manually increase
the data sizes in these test suites and write a data loader
for loading data into the database. Our framework repeat-
edly exercises the test suites and computes the effect sizes of
the performance impact. Moreover, we measure the perfor-
mance impact before and after fixing all the anti-patterns in
each test suite, separately. We use the percentage reduction
in response time, statistical significance of such reduction,
and effect size to measure performance impact (i.e., whether
there is an actual difference and how large the effect is).

Results:
Anti-pattern detection results: Table 1 shows the anti-pattern
detection result. For Pet Clinic, our framework does not
find any one-by-one processing anti-patterns. However, our
framework does find 10 instances of excessive data anti-
pattern. In particular, one of these 10 instances is also dis-
cussed online by developers and it is shown to cause serious

performance degradation [15]. By using our framework, this
performance problem can be detected in the early stages of
testing. In Broadleaf, our framework detected a total of 308
instances of one-by-one processing anti-pattern and 483 in-
stances of excessive data anti-pattern. Since a large number
of anti-pattern instances is detected, we only emailed the
top 10 instances of high impact performance anti-patterns
to the developers. We are currently waiting for their reply.
Due to non-disclosure agreement (NDA), we cannot present
the exact numbers of detected anti-patterns in EA. However,
we can confirm that our framework is able to detect many
of the existing and new performance problems in EA.

Performance benefits of removing excessive data: Table 2a
shows the performance impact of excessive data in each test
suite. Each test suite may cover multiple and overlapping
test cases. Overall, excessive data anti-patterns have a sta-
tistically significant performance impact and the effects are
at least from medium to large (0.68 − 42.41) in 5 out of 11
test suites.

The only test suite in Pet Clinic, which covers two in-
stances of excessive data anti-pattern, is related to browsing
information about different pet owners, pets, and pets’ visits
to the clinic. The performance impact of the excessive data
anti-patterns is very large (Cohen’s d is 42.41), and fixing
the anti-patterns can improve the response time by 98%.

We execute all Broadleaf test suites that contain instances
of excessive data anti-pattern. The anti-patterns cause a sig-
nificant performance impact in 33% of the test suites. Ex-
cessive data in three test suites has a medium to large sta-
tistical significant performance impact (effect sizes is 0.78–
6.45, and response time is improved by 12–16% after fixing
the anti-patterns). However, the impact of excessive data
anti-patterns in six test suites are trivial and are not statis-

tical significant. It is interesting to see that these test suites
have a small (≈1–3 seconds) and similar response time be-
fore and after fixing the performance anti-patterns, which
implies that these anti-pattern instances have a very low
performance impact.

We find that fixing excessive data anti-patterns in EA
gives a statistically significant improvement and can improve
the response time by 5% (a medium effect size of 0.68).

We manually investigate how excessive data anti-patterns
affect the performance in all three systems, because the per-
formance improvements vary considerably among the stud-
ied systems. We find that the differences in database schema
may introduce a significant performance impact on excessive
data anti-pattern. In Pet Clinic, we discover that when view-
ing the names of each owner’s pet (i.e., retrieve pet objects
from the database), the system eagerly retrieves every single
visit of a pet (i.e., one-to-many relationship). As a result,
many selects are executed to retrieve information about all
pet’s visits, which is not needed for displaying owner and
pets’ name. On the other hand, most instances of the ex-
cessive data anti-pattern in Broadleaf are one-to-one (e.g.,
one product has only one stack keeping unit) or many-to-one
(e.g., multiple payments are done by one customer), which
have a lower performance impact.

Performance benefits of removing one-by-one processing. Ta-
ble 2b shows the performance impact of one-by-one process-
ing in each test suite, and the assessed performance impact.
Table 2b does not show Pet Clinic since our framework does
not detect any instance of one-by-one processing.

In Broadleaf, one-by-one processing anti-patterns have a
statistically significant performance impact in 4 out of the
9 test suites, and the effect sizes are at least medium (0.59–
4.54). The assessed response time reduction is from 20–32%.

One-by-one processing anti-patterns have a non-statistical
significant impact in other test suites. Similar to our findings
in excessive data anti-patterns, these test suites have one
common behaviour: very short response time. The results
indicate that when the response time of a program is small,
adding batches will not give much improvement. This also
shows that not all anti-patterns are worth fixing.

Although we cannot show the mean response time and
confidence interval in EA, the assessed response time reduc-
tion is high (69%) and the effect size is large (55.3). By using
batch operations, the performance of EA was improved sig-
nificantly.�

�

	

Our performance assessment results show that perfor-
mance anti-patterns have a statistically significant per-
formance impact in 5/11 (excessive data) and 5/10
(one-by-one processing) test suites with effect sizes vary-
ing from medium to large. We find that fixing the per-
formance anti-patterns may improve the response time
by up to 98% (and on average by 35%).

RQ2: How do performance anti-patterns affect
system performance at different input scales?
Motivation: In RQ1, we manually change the data sizes
to large to study the impact of performance anti-patterns.
However, populating large volumes of data into the database
requires a long time, and a database expert is needed to
ensure that the generated data satisfies all the database
schema requirements [37]. In this research question, we

Table 3: Performance assessment result for differ-
ent scales of data sizes. We do not show the effect
size for the tests where the performance improve-
ments are not statistically significant (i.e., p-value
>= 0.05).

(a) Excessive Data

System Test Case Effect Sizes for Different Input Sizes
Description small medium large

Pet Clinic Browsing 16.91 27.94 42.41

Broadleaf
Shopping Cart – 0.52 0.78
Checkout 1.12 1.17 6.44
Order 0.92 2.36 5.39

EA Multiple Features – 0.76 0.68

(b) One-by-one Processing

System Test Case Effect Sizes for Different Input Sizes
Description small medium large

Broadleaf

Shopping Cart 0.88 1.77 2.08
Checkout – 0.55 1.86
Customer Addr. – 0.51 0.59
Order – 1.46 4.54

EA Multiple Features 16.2 21.8 55.3

study whether we still have the same prioritization ranking
of the performance anti-patterns using smaller data sizes.

Approach: We focus only on the test suites which yield
anti-patterns with statistical significant performance impact
in RQ1. We manually modify the test suites to change the
data sizes to medium and small as opposed to big data sizes
in RQ1. We reduce the data sizes by a factor of 2 at each
scale (e.g., medium data size is 50% of large data size and
small data size is 50% of the medium data size). Finally, we
re-run the performance tests to study how the performance
impact and effect size change at smaller scales.
Results:
Excessive data. Table 3a shows the performance impact as-
sessment result of excessive data at different scales. In Pet
Clinic, the performance impact is statistically significant and
the effect is large at all different scales. When the data size is
small, the effect size is the smallest (16.91) among the three
different data sizes. When the data size is medium the effect
size becomes 27.94, which is significantly smaller than the
effect size calculated using the large data size (42.41). In
addition, the effect size increases along with the input size,
which implies that identified performance anti-patterns in
Pet Clinic may cause scalability problems.

In Broadleaf, excessive data anti-patterns in almost all
test suites have a statistically significant performance im-
pact in all three scales (effect size 0.52–42.41). The result
implies that these anti-patterns can still be revealed using a
smaller scale of input data. The excessive data anti-pattern
in EA has a statistically significant impact when the data
sizes are medium and small (the effect sizes are medium).
However, we find hat the effect size is slightly smaller from
the large data size compared to that of the medium data
size. The reason for having a smaller effect size in larger
data size is that some excessively retrieved objects have a
many-to-one relations (e.g., multiple departments may be-
long to the same company), which only need to be retrieved
once and cached. Many-to-one excessive data anti-pattern
may cause large performance impact if the eagerly retrieved
data is large (large transmission overheads [38]). Our frame-
work reports all the detected anti-pattern instances and an-
notates the relationship (e.g., many-to-one or one-to-many),
so developers can determine the necessary action to them.

One-by-one processing. Table 3b shows the performance im-
pact assessment of one-by-one processing at different scales.
In general, one-by-one processing anti-patterns in Broadleaf
have a higher performance impact (i.e., larger effect sizes)
when the data sizes increase, because the data sizes directly
affect the number of iterations in loops. However in most
test suites, these one-by-one processing anti-patterns still
have a statistically significant impact at smaller scales. We
find that only three test suites do not have a significant per-
formance impact when the data size is small, but all test
suites have a significant performance impact when the data
size is medium (effect size 0.51–1.77). We find a similar
trend in EA, where the effect size increases as data size in-
creases. We can still identify performance problems in these
test suites using small to medium data sizes.

We find that the priority of the performance anti-patterns
at different scales is consistent, i.e., the rank of the effect
sizes in different test suites is consistent across different in-
put data scales. For example, the rank of the effect sizes for
test suites using medium and large data sizes is the same
except for the ranks of the Shopping cart test and the Order
test, which are swapped. As a result, if the generation of
large dataset takes too long or takes too much effort, we are
still very likely to reproduce the same set of severe perfor-
mance problems using a smaller dataset.�

�

	

We find that the prioritization of performance anti-
patterns when exercised on medium scale data size is
very similar to the large data size. This results show that
developers may not need to deal with all the difficulties
of populating large data into the database to reveal these
performance problems.

5. DISCUSSION
In this section, we discuss the accuracy of our perfor-

mance assessment, the distribution of our performance anti-
patterns across the studied systems, extensions of our frame-
work, and initial developer feedbacks.

The accuracy of our one-by-one processing perfor-
mance assessment methodology. In our performance
assessment methodology for one-by-one processing, we mea-
sure the response time of the original non-optimized and op-
timized SQL statements instead of directly fixing the code.
To study the accuracy of this methodology, we develop a
simple program with a known one-by-one processing anti-
pattern (example in Section 2) for evaluation.

We create a database with 100, 000 department names in
all companies and verify using the example in Figure 1 (3).
We fix the one-by-one processing pattern in the code by
writing SQL statements using JPA-specific query language.
The original code takes about 24.67 ± 0.84 seconds. Fix-
ing the code results in a mean response time of 5.36 ± 0.06
seconds, and the assessment shows a mean response time of
10.42±0.09 seconds. The experiment shows that our assess-
ment methodology may be an over-estimate but can achieve
a comparable performance improvement (78.3% v.s. 57.8%)
to assess the impact of the anti-patterns. In the future, we
plan to investigate automated performance refactoring ap-
proach for fixing the one-by-one processing anti-patterns.

Distribution of the detected performance anti-pattern
instances. In Section 4, we studied how the impact of the
performance anti-patterns changes with different scales of

Table 4: Skewness of performance anti-pattern in-
stances found in the studied systems.

System Excessive One-by-one All
Data Processing Anti-patterns

Pet Clinic 0.9 — 0.9
Broadleaf 4.5 7.0 5.2
EA 10.4 7.0 9.0

input data. However, we are not sure how these instances of
anti-patterns are distributed across different software pack-
ages. The distribution of the anti-pattern instances may
affect the allocation of QA resources. It would be challeng-
ing to manually review and verify these performance anti-
pattern instances if they were found evenly in all software
packages, since more general knowledge about the whole sys-
tem would be needed. On the other hand, if the anti-pattern
instances are mostly found within a few packages, database
experts can put more QA resources on verifying them in
these packages.

We analyze the anti-pattern detection results that we ob-
tained from the case study, and count the number of anti-
pattern instances in each software package. We plot the Cu-
mulative Density Function (CDF) of number of total per-
formance anti-pattern instances (both excessive data and
one-by-one processing) in all the software packages. CDF
can be used to explore the distribution of data, and provide
observation such as “70% of the packages have at most one
performance anti-pattern”. More formally, CDF shows the
probability that the value of a random variable will be less
than or equal to a given value in a probability distribution.

We also compute the skewness [39] on the number of anti-
pattern instances in all packages. If the skewness is larger
than 1, the distribution is highly skewed; if the skewness
value is between 0.5 and 1, the distribution is moderately
skewed; and if the skewness value is less than 0.5, the dis-
tribution approximately symmetric [39].

Table 4 shows the skewness of the performance anti-pattern
instances. We find that the anti-patterns are highly skewed
in all studied systems (0.9–10.4). The skewness for exces-
sive data anti-patterns is larger than 0.5 in Pet Clinic and
larger than 1 in the other systems – implying that excessive
data anti-patterns are found mostly in a few packages; and
so are one-by-one processing anti-patterns (skewness 7.0 in
Broadleaf and EA). The skewness of the total number of
anti-pattern instances (combining excessive data and one-
by-one processing) is also high (0.9–9.0). Since we want to
compare the distribution of the number of anti-pattern in-
stances in packages, we normalize the anti-pattern instance
counts in Figure 3. Figure 3 (EA is excluded due to NDA)
shows that most software packages do not have instances
of performance anti-patterns (e.g., more than 60% of the
packages in Broadleaf have almost zero performance anti-
pattern instance), and only about 15–35% of the packages
in Broadleaf have anti-pattern instances. As a result, devel-
opers and database experts can focus on reviewing the code
and verifying the anti-pattern instances in a small number
of packages, without needing whole-system knowledge.

We want to understand which packages tend to have more
performance anti-pattern instances. We rank the packages
by the number of performance anti-pattern instances (both
excessive data and one-by-one processing together) contained
in each package, and list the names in Table 5. We ex-
clude EA in this study due to NDA. We find that pack-
ages related to handling events (e.g., the service and ser-

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Normalized Anti−pattern Count

C
u
m

u
la

ti
ve

 D
e
n
s
it
y

Pet Clinic

Broadleaf

Figure 3: Cumulative density function (CDF) plots
of number of performance anti-pattern instances
found in packages. The x-axis shows the normalized
number of performance anti-patterns in a package,
and the y-axis shows the cumulative density.

Table 5: Names of the top 3 packages containing
most performance anti-patterns.

System Package No. Exces- No.
Name sive Data One-by-one

Pet Clinic
service 5 —
web 3 —
model 2 —

Broadleaf
core.order.domain 34 28
core.order.service 20 41
core.offer.service.processor 10 41

vice.processor packages), data model (e.g., the model and
domain packages), and GUI (the web package) contain more
performance anti-pattern instances in these systems. In the
future, we plan to study the root cause of the performance
anti-patterns in these packages and how to avoid them.

Framework extension. In this paper, we proposed a rule-
based approach, which detects and prioritizes two of the
most pervasive ORM performance anti-patterns. Similar
as any other pattern detection work, our framework can-
not detect unseen performance anti-patterns. However, our
framework could easily be extended by encoding other per-
formance anti-patterns. In the future, we can plan to add
new detection rules and apply the rules on the global call
and data flow graphs to find new performance anti-patterns.

Initial Developer Feedback. We have received positive
feedback from developers and performance testers in EA.
The framework is able to help them narrow down the per-
formance problems and find potential bottlenecks. We are
currently working closely with the developers in EA for inte-
grating the framework in their daily development processes.

6. THREATS TO VALIDITY
In this section, we discuss the threats to validity.

6.1 External Validity
We have only evaluated our framework on three systems.

Some of the findings (e.g., which system components may
have more performance anti-patterns) might not be gener-
alizable to other systems. Although the studied systems
vary in sizes and domains, other similar systems may have
completely different results. Future work should apply our
framework to more systems and even different programming
languages (e.g., C#).

6.2 Construct Validity
Detection approach. We use static analysis for detecting
performance anti-patterns. However, static analyses gen-
erally suffer from the problem of false positives, and our
framework is no exception. For example, a detected perfor-
mance anti-pattern may be seldom or never executed due to
reasons like unrealistic scenarios or small input sizes. There-
fore, we provide a performance assessment methodology to
verify the impact and prioritize the fixing of the detected
performance anti-patterns.
Experimental setup. We exercise the performance anti-
patterns using either performance or integration test suites,
so we do not have control over which performance anti-
patterns will be exercised. As a result, our performance
impact assessment study only applies to the exercised per-
formance anti-patterns. However, our performance impact
assessment methodology is general, and can be used to dis-
cover the impact of performance anti-patterns in different
software components and to prioritize QA effort.

We manually change the data sizes to study how the im-
pact of performance anti-patterns changes in different scales.
Changing the data loader in the code and loading data in
the database require a deep understanding of the system’s
structure and design of each test suite. Although we studied
the code in each test suite and database schemas carefully,
it is still likely that we did not change the inputs that are
directly associated with the performance anti-patterns, or
that the data does not generate representative workloads.
However, case studies show that we can still flag a similar
set of high impacting performance anti-patterns using dif-
ferent sizes of database.
Fixing performance anti-patterns and performance
assessment. Fixing some performance anti-patterns may
require API breaks and redesign of the system. Therefore,
fixing them may not be an easy task. For example, to achieve
maximal performance improvement, sometimes it is neces-
sary to write SQL statements in ORM [40]. If the anti-
pattern is generating many small database messages, which
cause transmitting overheads and inefficient bandwidth us-
age, the solution is to apply batching [41]. In addition, differ-
ent implementations of ORM support different ways to op-
timize performance. As a result, we provide a performance
assessment methodology for assessing the performance im-
pact. We use a similar methodology as Jovic et al. [23] to
measure the performance impact of one-by-one processing,
and we manually fix the excessive data anti-patterns in the
code. Although our performance assessment methodology
may not give the exact performance improvement and there
may be other ways to fix the performance anti-patterns, we
can still use the assessment result to prioritize the manual
verification and performance optimization effort. We can
further reduce the overheads of running the performance as-
sessment approach using the result of our static analysis,
and focus only on the parts of the system that are prone to
performance anti-patterns.

It is possible that the performance fixes may have contra-
dicting result in different use cases. For example, in some
cases using a fetch type of EAGER may yield a better per-
formance, but may yield performance degradation in other
cases. However, since ORM provides a programming inter-
face to change the configuration and fetch plans dynamically,
the problem can be solved by developers easily.

7. RELATED WORK
In this section, we discuss the following two areas of re-

lated research: (1) design-level performance anti-patterns
and (2) detecting performance bugs.

Design-level performance anti-patterns. Most prior
studies focus on discussing and detecting design-level per-
formance anti-patterns. Smith and Williams [42] discuss
design-level anti-patterns that may cause performance im-
pacts, and provide solutions on how to refactor the design to
eliminate the performance problem. In their followup work,
Smith and Williams [41] document the problem and possi-
ble solution of another three performance anti-patterns. One
of the anti-patterns discussed in their paper, called Empty
Semi Trucks, is related to the one-by-one processing anti-
pattern discussed in this paper. Empty Semi Trucks oc-
curs when a large number of excessive requests is performed
for a given task, such as retrieving information from the
database. Our paper, on the other hand, focuses on detect-
ing a variant of Empty Semi Trucks using static analysis,
and we propose a framework that can automatically assess
the performance impact of the detected anti-patterns. Nij-
jar et al. [43] extract a formal data models from the ORM
specification of system, and develop heuristics to discover
anti-patterns in the data model. Their framework can then
automatically propose solutions to correct the data models.
Cortellessa et al. [44] discuss various approaches of detecting
design-level performance anti-patterns using software mod-
elling and design-change rules.

Most prior studies on performance anti-patterns aim to
improve the architecture and class design; where our work
focuses on how developers write ORM code. To the best of
our knowledge, our paper is the first work that aims to detect
software performance anti-patterns using static analysis and
provide a performance assessment automatically for systems
that are developed using ORM.

Performance bug detection. Prior studies propose vari-
ous approaches to detect different performance bugs through
run-time indicators of such bugs.

Parsons et al. [10] present an approach for automatically
detecting performance issues in enterprise applications built
using component-based frameworks. Parsons et al. detect
performance issues by reconstructing the run-time design of
the system using monitoring and data mining approaches.
Chis et al. [9] provide a tool to detect memory anti-patterns
in Java heap dumps using a catalogue. Nistor et al. [8] pro-
pose a performance bug detection tool which detects perfor-
mance problems by finding similar memory-access patterns
during system execution. Nistor et al. report code loops with
repetitive computation and partially similar memory-access
patterns. Tamayo et al. [45] construct the program depen-
dency graph using dynamic information flow, and combine
the information with the corresponding database operations
to identify performance bottlenecks. Their tool may also be
used to identify problems related to batching, SQL synchro-
nization, repetitive SQL queries, and extra operations.

Xu et al. [11] introduce copy profiling, an approach that
summarizes runtime activity in terms of chains of data copies,
which are indicators of Java runtime bloat (i.e., many tem-
porary objects executing relatively simple operations). Xu
et al. [46] introduce a run-time analysis to identify low-
utility data structures where the involve costs that are out
of line with the gained benefits. Xiao et al. [12] use different

workloads to identify and predict workload-dependent per-
formance bottlenecks (i.e., performance bugs) in GUI ap-
plications. Grechanik et al. [47] develop an approach for
detecting database deadlocks with high degrees of automa-
tion. In another work, Grechanik et al. [48] combine dy-
namic analysis and static code analysis to prevent database
deadlocks.

Most of the aforementioned studies typically detect perfor-
mance bugs during the execution of the software, which may
not cover all the code paths depending on the input work-
flow. In addition, generating workflows that exercise differ-
ent components of a system requires good domain knowledge
and can be very time consuming. In this paper, we provide
a framework to statically identify performance anti-patterns
by analyzing the source code of the system. The advantage
of using static code analysis is that we can identify parts of
the code that are not executed by the input workflow but
may still contain performance bugs. In addition, we focus
on ORM performance anti-patterns, which may not be cap-
tured by detecting performance anti-pattern using memory
access (e.g., [8, 9, 10]). Moreover, we provide a statisti-
cal rigorous performance assessment approach that can be
used to evaluate the impact of the detected performance
anti-patterns, which is generally missing in prior studies.

8. CONCLUSION
Object-Relational Mapping (ORM) provides a conceptual

abstraction between the application code and the database.
ORM significantly simplifies the software development by
automatically translating object accesses and manipulations
to database queries. Developers can focus on business logic
instead of worrying about non-trivial database access de-
tails. However, such mappings might lead to performance
anti-patterns causing transactions timeout or hangs in large-
scale software systems.

In this paper, we propose a framework, which can detect
and prioritize instances of ORM performance anti-patterns.
We applied our framework on three software systems: two
open-source and one large enterprise systems. Case studies
show that our framework can detect hundreds or thousands
instances of performance anti-patterns, while also effectively
prioritizing the fixing of these anti-pattern instances using
a statistically rigorous approach. Our static analysis result
can further be used to guide dynamic performance assess-
ment of these performance anti-patterns, and reduce the
overheads of profiling and analyzing the entire system. We
find that fixing these instances of performance anti-patterns
can improve the systems’ response time by up to 98% (and
on average by 35%).

ACKNOWLEDGEMENTS
We are grateful to BlackBerry for providing data that made
this study possible. The findings and opinions in this paper
belong solely to the authors, and are not necessarily those of
BlackBerry. Moreover, our results do not in any way reflect
the quality of BlackBerry software products.

9. REFERENCES
[1] Douglas Barry and Torsten Stanienda. Solving the

java object storage problem. Computer, 31(11):33–40,
November 1998.

[2] Neal Leavitt. Whatever happened to object-oriented
databases? Computer, 33(8):16–19, August 2000.

[3] R. Johnson. J2ee development frameworks. Computer,
38(1):107–110, 2005.

[4] JBoss Community. Hibernate.
http://www.hibernate.org/, 2013.

[5] Apache Software Foundation. Apache openjpa.
http://openjpa.apache.org/, 2013.

[6] L. Richardson and S. Ruby. RESTful Web Services.
O’Reilly Media, 2008.

[7] Weiyi Shang, Zhen Ming Jiang, Hadi Hemmati, Bram
Adams, Ahmed E. Hassan, and Patrick Martin.
Assisting developers of big data analytics applications
when deploying on hadoop clouds. In Proceedings of
the 2013 International Conference on Software
Engineering, ICSE ’13, pages 402–411, 2013.

[8] Adrian Nistor, Linhai Song, Darko Marinov, and Shan
Lu. Toddler: detecting performance problems via
similar memory-access patterns. In Proceedings of the
2013 International Conference on Software
Engineering, ICSE ’13, pages 562–571, 2013.

[9] Adriana E. Chis. Automatic detection of memory
anti-patterns. In Companion to the 23rd ACM
SIGPLAN conference on Object-oriented programming
systems languages and applications, OOPSLA
Companion ’08, pages 925–926, 2008.

[10] Trevor Parsons and John Murphy. A framework for
automatically detecting and assessing performance
antipatterns in component based systems using
run-time analysis. In The 9th International Workshop
on Component Oriented Programming, WCOP ’04,
2004.

[11] Guoqing Xu, Nick Mitchell, Matthew Arnold, Atanas
Rountev, and Gary Sevitsky. Software bloat analysis:
finding, removing, and preventing performance
problems in modern large-scale object-oriented
applications. In Proceedings of the FSE/SDP workshop
on Future of software engineering research, FoSER ’10,
pages 421–426, 2010.

[12] Xusheng Xiao, Shi Han, Dongmei Zhang, and Tao Xie.
Context-sensitive delta inference for identifying
workload-dependent performance bottlenecks. In
Proceedings of the 2013 International Symposium on
Software Testing and Analysis, ISSTA 2013, pages
90–100, 2013.

[13] Spring PetClinic. Petclinic. https:
//github.com/SpringSource/spring-petclinic/,
2013.

[14] Broadleaf Commerce. Broadleaf commerce.
http://www.broadleafcommerce.org/, 2013.

[15] Julie Dubois. Improving the performance of the
spring-petclinic sample application.
http://blog.ippon.fr/2013/03/14/improving-the-

performance-of-the-spring-petclinic-sample-

application-part-4-of-5/, 2013.

[16] Patrycja Wegrzynowicz. Performance anti-patterns in
hibernate. http://www.devoxx.com/display/DV11/
Performance+Anti-Patterns+in+Hibernate, 2013.

[17] C.U. Smith and L.G. Williams. Performance
Solutions: A Practical Guide to Creating Responsive,
Scalable Software. The Addison-Wesley object

technology series. ADDISON WESLEY Publishing
Company Incorporated, 2001.

[18] D. Gollmann. Computer Security. Wiley, 2011.

[19] JBoss Community. Hibernate. http:
//docs.jboss.org/hibernate/orm/4.2/manual/en-

US/html/ch20.html#performance-fetching, 2014.

[20] Simon F. Goldsmith, Alex S. Aiken, and Daniel S.
Wilkerson. Measuring empirical computational
complexity. In Proceedings of the the 6th joint meeting
of the European software engineering conference and
the ACM SIGSOFT symposium on The foundations of
software engineering, ESEC-FSE ’07, pages 395–404,
2007.

[21] Dmitrijs Zaparanuks and Matthias Hauswirth.
Algorithmic profiling. In Proceedings of the 33rd ACM
SIGPLAN conference on Programming Language
Design and Implementation, PLDI ’12, pages 67–76,
2012.

[22] R.V. Binder. Testing Object-oriented Systems: Models,
Patterns, and Tools. Addison-Wesley, 2000.

[23] Milan Jovic, Andrea Adamoli, and Matthias
Hauswirth. Catch me if you can: performance bug
detection in the wild. In Proceedings of the 2011 ACM
international conference on Object oriented
programming systems languages and applications,
OOPSLA ’11, pages 155–170, 2011.

[24] Ryan Bloom. log4jdbc.
https://code.google.com/p/log4jdbc/, 2013.

[25] Tomas Kalibera and Richard Jones. marking in
reasonable timerigorous benchmarking in reasonable
time. In Proceedings of the 2013 international
symposium on International symposium on memory
management, ISMM ’13, pages 63–74, 2013.

[26] Andy Georges, Dries Buytaert, and Lieven Eeckhout.
Statistically rigorous java performance evaluation. In
Proceedings of the 22nd annual ACM SIGPLAN
conference on Object-oriented programming systems
and applications, OOPSLA ’07, pages 57–76, 2007.

[27] Matthew Arnold, Michael Hind, and Barbara G.
Ryder. Online feedback-directed optimization of java.
In Proceedings of the 17th ACM SIGPLAN conference
on Object-oriented programming, systems, languages,
and applications, OOPSLA ’02, pages 111–129, 2002.

[28] D.S. Moore, G.P. MacCabe, and B.A. Craig.
Introduction to the Practice of Statistics. W.H.
Freeman and Company, 2009.

[29] Shinichi Nakagawa and Innes C. Cuthill. Effect size,
confidence interval and statistical significance: a
practical guide for biologists. Biological Reviews,
82:591–605, 2007.

[30] Vigdis By Kampenes, Tore Dyb̊a, Jo E. Hannay, and
Dag I. K. Sjøberg. Systematic review: A systematic
review of effect size in software engineering
experiments. Inf. Softw. Technol.,
49(11-12):1073–1086, November 2007.

[31] B.A. Kitchenham, S.L. Pfleeger, L.M. Pickard, P.W.
Jones, D.C. Hoaglin, K. El Emam, and J. Rosenberg.
Preliminary guidelines for empirical research in
software engineering. IEEE Trans. Softw. Eng.,
28(8):721–734, 2002.

[32] J. Hartung, G. Knapp, and B.K. Sinha. Statistical
Meta-Analysis with Applications. Wiley, 2011.

http://www.hibernate.org/
http://openjpa.apache.org/
https://github.com/SpringSource/spring-petclinic/
https://github.com/SpringSource/spring-petclinic/
http://www.broadleafcommerce.org/
 http://blog.ippon.fr/2013/03/14/improving-the-performance-of-the-spring-petclinic-sample-application-part-4-of-5/
 http://blog.ippon.fr/2013/03/14/improving-the-performance-of-the-spring-petclinic-sample-application-part-4-of-5/
 http://blog.ippon.fr/2013/03/14/improving-the-performance-of-the-spring-petclinic-sample-application-part-4-of-5/
http://www.devoxx.com/display/DV11/Performance+Anti-Patterns+in+Hibernate
http://www.devoxx.com/display/DV11/Performance+Anti-Patterns+in+Hibernate
 http://docs.jboss.org/hibernate/orm/4.2/manual/en-US/html/ch20.html#performance-fetching
 http://docs.jboss.org/hibernate/orm/4.2/manual/en-US/html/ch20.html#performance-fetching
 http://docs.jboss.org/hibernate/orm/4.2/manual/en-US/html/ch20.html#performance-fetching
https://code.google.com/p/log4jdbc/

[33] J. Cohen. Statistical Power Analysis for the
Behavioral Sciences. L. Erlbaum Associates, 1988.

[34] Glenn E. Krasner and Stephen T. Pope. A cookbook
for using the model-view controller user interface
paradigm in smalltalk-80. J. Object Oriented
Program., 1(3):26–49, August 1988.

[35] SpringSource. Spring framework.
www.springsource.org/, 2013.

[36] Guoliang Jin, Linhai Song, Xiaoming Shi, Joel
Scherpelz, and Shan Lu. Understanding and detecting
real-world performance bugs. In Proceedings of the
33rd ACM SIGPLAN conference on Programming
Language Design and Implementation, PLDI ’12, 2012.

[37] Gregory M. Kapfhammer, Phil McMinn, and Chris J.
Wright. Search-based testing of relational schema
integrity constraints across multiple database
management systems. In Proceedings of the 6th
International Conference on Software Testing
Verification and Validation, ICST ’13, 2013.

[38] P. Zaitsev, V. Tkachenko, J.D. Zawodny, A. Lentz,
and D.J. Balling. High Performance MySQL:
Optimization, Backups, Replication, and More.
O’Reilly Media, 2008.

[39] G. Bulmer. Principles of Statistics. Dover Books on
Mathematics Series. Dover Publications, 1979.

[40] J. Linwood and D. Minter. Beginning Hibernate.
Apresspod Series. Apress, 2010.

[41] C. U. Smith and L.G. Williams. More new software
performance antipatterns: Even more ways to shoot
yourself in the foot. In Proceedings of the 2003
Computer Measurement Group Conference, CMG
2003, 2003.

[42] Connie U. Smith and Lloyd G. Williams. Software
performance antipatterns. In Proceedings of the 2Nd

International Workshop on Software and
Performance, WOSP ’00, pages 127–136, 2000.

[43] Jaideep Nijjar and Tevfik Bultan. Data model
property inference and repair. In Proceedings of the
2013 International Symposium on Software Testing
and Analysis, ISSTA ’13, pages 202–212, 2013.

[44] Vittorio Cortellessa, Antinisca Di Marco, and Catia
Trubiani. Software performance antipatterns:
Modeling and analysis. In Proceedings of the 12th
International Conference on Formal Methods for the
Design of Computer, Communication, and Software
Systems: Formal Methods for Model-driven
Engineering, SFM’12, pages 290–335, 2012.

[45] Juan M. Tamayo, Alex Aiken, Nathan Bronson, and
Mooly Sagiv. Understanding the behavior of database
operations under program control. In Proceedings of
the ACM International Conference on Object Oriented
Programming Systems Languages and Applications,
OOPSLA ’12, pages 983–996, 2012.

[46] Guoqing Xu, Nick Mitchell, Matthew Arnold, Atanas
Rountev, Edith Schonberg, and Gary Sevitsky.
Finding low-utility data structures. In Proceedings of
the 2010 ACM SIGPLAN conference on Programming
language design and implementation, PLDI ’10, pages
174–186, 2010.

[47] M. Grechanik, B.M.M. Hossain, and U.A. Buy. Testing
database-centric applications for causes of database
deadlocks. In Proceedings of the 6th International
Conference on Software Testing Verification and
Validation, ICST ’13, pages 174–183, 2013.

[48] Mark Grechanik, B. M. Mainul Hossain, Ugo Buy, and
Haisheng Wang. Preventing database deadlocks in
applications. In Proceedings of the 9th Joint Meeting
on Foundations of Software Engineering, ESEC/FSE
2013, pages 356–366, 2013.

www.springsource.org/

	Introduction
	Motivating Examples
	Excessive Data
	One-by-one Processing

	Our Framework
	Data Extraction
	Extracting Database-accessing Functions, Local Call Graphs, and ORM Configurations
	Identifying Database-accessing Code Paths

	Performance Anti-pattern Detection
	Performance Assessment

	Case Study
	Discussion
	Threats to Validity
	External Validity
	Construct Validity

	Related Work
	Conclusion
	References

