
Automatic Detection of Performance Deviations in

the Load Testing of Large Scale Systems
Haroon Malik

1
, Hadi Hemmati

2
, Ahmed E. Hassan

1

1
 Software Analysis and Intelligence Lab (SAIL)

School of Computing, Queen‟s University, Kingston, Canada

{malik, ahmed}@cs.queensu.ca
2
 David R. Cheriton School of Computer Science

University of Waterloo, Waterloo, Canada

hhemmati@uwaterloo.ca

Abstract—Load testing is one of the means for evaluating the

performance of Large Scale Systems (LSS). At the end of a

load test, performance analysts must analyze thousands of

performance counters from hundreds of machines under test.

These performance counters are measures of run-time system

properties such as CPU utilization, Disk I/O, memory

consumption, and network traffic. Analysts observe counters to

find out if the system is meeting its Service Level Agreements

(SLAs). In this paper, we present and evaluate one supervised

and three unsupervised approaches to help performance

analysts to 1) more effectively compare load tests in order to

detect performance deviations which may lead to SLA

violations, and 2) to provide them with a smaller and

manageable set of important performance counters to assist in

root-cause analysis of the detected deviations. Our case study is

based on load test data obtained from both a large scale

industrial system and an open source benchmark application.

The case study shows, that our wrapper-based supervised

approach, which uses a search-based technique to find the best

subset of performance counters and a logistic regression model

for deviation prediction, can provide up to 89% reduction in

the set of performance counters while detecting performance

deviations with few false positives (i.e., 95% average precision).

The study also shows that the supervised approach is more

stable and effective than the unsupervised approaches but it

has more overhead due to its semi-automated training phase.

Index Terms—Performance, Signature, Machine Learning.

I. INTRODUCTION

Large scale systems such as Amazon, Ebay, Google and

many modern web services are composed of thousands of

machines running complex applications. These systems

generate revenue by providing services, supporting a large

user base. Therefore, any performance degradations in their

systems can result in large monetary losses. For instance, an

hour-long PayPal outage may have prevented up to $7.2

million in customers transactions [1].

To detect early performance problems in a system before

they become critical field problems, performance analysts

use load testing. Load testing, in general, refers to the

practice of assessing a system‟s behavior under heavy load.

Unfortunately, current load test analysis practices are

laborious, time consuming and error prone. Existing research

on load testing focuses primarily on the automatic generation

of load test suites [2]. However, there is limited research on

how to effectively analyze the load tests of LSS which

generate terabytes of performance related data.

During a load test, which may span over many days,

usually one or more load generators simulate thousands of

concurrent transactions [3].The application under test is

closely monitored and a very large volume of performance

counter data is logged. These performance counters capture

the performance properties of the system, e.g. CPU

utilization, disk I/O, queues and network traffic, at run-time.

Such information is of vital interest to performance analysts.

The information helps them observe the system‟s behavior

under load by comparing against already documented

behavior from past similar tests. In cases where such

documented behavior does not exist, e.g., for a new

component, product or a major release under test,

performance analysts use their domain knowledge and

experience to decide about the expected behavior.

In our previous work [4], we introduced an unsupervised

approach to automate the load test analysis. In this paper, we

propose two additional unsupervised approaches, as

comparison baselines, along with a new supervised approach

for the same type of analysis. All four approaches use

performance counter data obtained from a load test to

construct performance signatures. These signatures are

minimal sets of performance counters that describe the

essential characteristics of a System Under Test (SUT) for a

given load test. Analyzing the load data of signatures rather

than the entire data helps to 1) effectively compare a load test

with baseline tests in order to detect performance deviations,

and 2) provide the analyst with a manageable set of

performance counters for root-cause analysis. We identify

the main contributions of this paper as:

 We provide accurate and novel approaches for

automatically detecting performance deviations in a load

test, with minimum domain knowledge.

Fig. 1. A high level overview of our approach

Baseline Test

New Test

P
er

fo
rm

an
ce

D
ev

ia
ti

o
n

D
et

ec
ti

o
n

Performance

Signature

Generation

D
at

a

P
re

p
ar

at
io

n

 In both industrial and open-source settings, we

empirically evaluate and compare the effectiveness of

our approaches and show that we can achieve up to 95%

average precision and 94% average recall.

II. AUTOMATED ANALYSIS OF LOAD TESTS

A typical load test consists of a) test environment setup,

b) load generation, c) load test execution, and d) load test

analysis, which is the focus of this paper. In practice,

analysts use personal judgment together with the opinion of

experts and senior analysts, to decide whether the results of a

load test show any deviation from a baseline or not.

However, extensive knowledge of the subsystems and their

related counters is required for thoroughly analyzing the

performance counter data and to timely isolate performance

problems [5] [4]. Therefore, in this paper, we propose and

compare automated approaches for performance deviation

detection. These approaches help analysts analyze load test

results more effectively, and provide them with a smaller and

manageable set of important performance counters to assist

in the root-cause analysis of the deviations.

Our high-level approach, shown in Fig.1, is based on

reducing the size of the performance counter data to a small

signature and comparing the signature of a load test with the

signature of its baseline test. As discussed, the signature-

based approach is chosen to assist the analyst in further root-

cause analysis. It is much easier to inspect a few performance

counters than to inspect the entire (hundreds or thousands)

set of counters that are recorded during a test.

The deviation detection process starts with preparing

performance data of the load test and the baseline test. One

of the main reasons for data preparation is to deal with the

„missing data‟. Due to the distributed nature of large scale

systems, performance counter data may miss some data or

contain empty counter variables. A performance counter data

is missing when performance monitors fail to record some

observations of a performance counter variable (e.g. % CPU

Utilization) due to reasons such as bandwidth congestion,

system freeze, or overflow of I/O buffers. A counter variable

is entirely empty when a resource under monitoring cannot

start the service for collecting counter values. We sanitize the

performance counter data by removing empty counter

variables. The missing performance counter data is handled

through the use of list-wise deletion, i.e. excluding the entire

record if any single performance counter value is missing in

the record [6].

To shrink the data to the important counters, a

performance counter signature is generated from the list of

performance counters of the baseline test, which can be seen

as a dimension reduction problem. Next, a similar set of

counters is extracted from the new load test run. In case, a

performance counter that is part of the baseline load test

signature cannot be extracted from the new load test run, the

respective performance counter is eliminated from the

baseline signature. The signature cannot be extracted from

the new load test due to numerous reasons such as:

TABLE I. OUR SIGNATURE AND DEVIATION DETECTION APPROACHES

Type Signature generation Deviation detection

Un-

supervised

Random sampling
Control Chart

Clustering (K-Means)

PCA PCA Weights (loadings)

Supervised WRAPPER Logistic regression

a) the removal of counter data during data preparation, b) the

failure of logging as performance counter resources may

become unavailable during the course of a test (unreachable

due to bandwidth saturation or network problem), and c) the

inability of the monitoring agent to start a thread at a

monitoring station to sample a resource. Finally, the values

of the signature (selected performance counters) of the

current load test are compared with the baseline test data.

The deviations are reported as anomalies and the signature is

sent for investigation a part of the root-cause analysis.

TABLE I summarizes our approaches. We use two basic

dimension reduction algorithms, random and clustering,

mostly as baseline of comparison for signature generation.

We also introduce two more advanced approaches, one

supervised (WRAPPER) and one unsupervised (PCA), to

explore the possibility of improving the baselines. We keep

the baseline deviation detection approaches as simple as

possible by using the simple and yet effective control chart

[7]. We could have used control charts for the advanced

deviation detection approaches as well; however, we decided

to use customized deviation detection techniques per

approach to maximize their effectiveness. We use PCA

weights for the PCA approach and logistic regression for the

WRAPPER approach. These techniques make use of the

readily available information per approach. In the rest of this

section, we explain these approaches in more detail.

Note that all these approaches require the data

preparation step. In addition, the supervised approach needs

the normal and abnormal performance counter values to be

labeled in some baseline tests. However, the unsupervised

approaches do not need any such extra knowledge.

A. Random Sampling Approach

Motivation: This approach uses a random sampling

algorithm for signature generation and a control chart for

performance deviation detection. The motivation behind this

approach is to use the most basic baseline for comparing the

performance against our other proposed anomaly detection

approaches.

Signature Generation: The simplest approach to reduce

the performance counters and make a small signature is to

randomly select some counters from the pool of all

performance counters recorded during a load test. The only

question left to answer for random sampling is the number of

counters to select. We use 20 performance counters to

construct a signature. This comes from our experience with

practitioners (performance analysts of our industrial partner)

and their “preferred” maximum manageable signature size.

Note that, generally, this maximum size depends on the

testers‟ preferences and the systems size. We also look into

Fig. 2. An example control chart

the effect of signature size more carefully in the stability

analysis section (section IV.C).

Deviation Detection: In this approach, automatic

detection of performance deviations between a baseline load

test and a new load test is determined by comparing the

performance signatures based on a statistical quality control

technique called “control charts” [7]. Control charts use

control limits to represent the limits of variation that should

be expected from a process. When a process is within the

controlled limits, any variation is normal. Outside limit

variations, however, considered as deviations. We used

control charts due to its previous success in analyzing load

tests [7]. We drive the control limits of a control chart from

the baseline load test, per performance counter. If there is

any observed value of the counter of a new load test that

violates the control limits, then the test is marked as

deviated. For a given performance counter, the Central Limit

(CL) of a control chart is the median of all values of the

performance counter in the baseline test. The Upper/Lower

Control Limit (U/LCL) is the upper/lower limit of the range

of a counter under the normal behavior of the system. A

common choice to detect performance violations using

control charts is to use 10
th
 and 90

th
 percentiles to identify

LCL and UCL [7]. A violation ratio, which is used as a

threshold for deviation detection, is the percentage of the

performance violations over the entire data points.

Let us explain the use of control charts for deviation

detection with an example. Fig. 2 shows an example where

performance counter „A‟ of a baseline load test has eleven

instances <11,10,5,6,7,8,6,10,13,9,3>. The LCL (10th

percentile), CL (median), and UCL (90th percentile) for the

baseline are 4, 8, and 12, respectively. The values of the

counter for the new load test are <2,3,6,7,4,14,10,9,1,13,4>.

The violations are load test values that are greater than the

baseline‟s UCL (12) or smaller than its LCL (4). Hence, in

this example, the violation ratio of the new load test is

6/11=54%. Note that it is important to set the threshold

higher than the violation ratio of the baseline load test itself

(2/11= 18%). For example, assuming 20% as the threshold,

the new load test is marked as deviated.

B. Clustering (K-Means) Approach

Motivation: Performance counter data for a load test is

highly correlated. There are many counters that essentially

measure a common performance characteristic. For example

counters such as „Processor time‟, „Total processor time‟,

and „processor total privileged time‟ are basically measuring

the processor utilization. One of the most common practices

for removing correlated parameters (in our case, performance

counters) is clustering. Using a clustering algorithm, one can

group performance counters based on a measure of

similarities, such that the highly similar counters are in the

same groups. Then, to reduce the dimensionality of the data

and to generate a small signature, one can select one

representative counter per group. We now detail the

“signature generation” step of our “Clustering” approach.

Signature Generation: The clustering algorithm used in

our approach is the well-known K-Means [8]. It is chosen

because of its simple implementation and the wide usage for

numerical data clustering, especially performance data

clustering [8].

The K-Means clustering takes n performance counters

and k number of clusters to find, as input. Each performance

counter is represented by a vector of its values for different

data items. The clustering algorithm groups the counters into

k clusters with the objective of minimizing the squared error,

the sum of the squared Euclidean distance of each vector

from the centroid of its cluster. The signature of a baseline

load test is then composed of the representative counters (the

centroids of each cluster).

Deviation Detection: This approach uses the same

Control-Chart explained in the Random-Sampling approach.

C. PCA Approach

Motivation: In this approach, Principal Component

Analysis (PCA) [9], a robust and scalable statistical

algorithm, is used as a more advanced technique compared to

clustering in order to reduce the sheer volume of

performance counters. Basically, the high level goal of using

PCA in our context is the same as using clustering: selecting

the least correlated subset of performance counters that can

still explain the maximum variations in the data.

The main objective of PCA is to reduce the

dimensionality of the original data by projecting the data set

onto a space of lower dimensionality. To do so, PCA re-

expresses the data using new variables which are a linear

combination of the original variables (i.e., counters). The

new variables, which are called principal components (PCs),

are generated in a way that the top components can explain

the variation in the data as good as the entire variable set. In

addition, the new components have lower collinearity.

Therefore, one can choose only a few top components and

reduce the dimensionality of the data. More details on the

PCA, its detailed implementation, and application on

variable reduction can be found in [4].

In our previous work, we used PCA for the dimension

reduction of performance data. Thus in this paper, we re-

apply that approach in a larger setting and on more cases. We

also evaluate the PCA approach compared to the other newly

introduced approaches of this paper.

Data Preparation: Performance counters have different

ranges of numerical values which result in different

variances. PCA identifies those variables that have a large

data spread ignoring those variables with low variance.

0

5

10

15

1 2 3 4 5 6 7 8 9 10 11

P
er

fo
rm

an
ce

 C
o
u

n
te

r

V
al

u
e

Time (min)

Baseline
load Test
New
Load Test
Baseline
LCL,UCL
Baseline
CL

TABLE II. PRINCIPAL

COMPONENT ANALYSIS
TABLE III. PERFORMANCE

SIGNATURE

 Eigen

Value

Variability

PC (%) Cumulative

PC1 11.4 63.5 63.5

PC2 2.4 15.2 78.7

PC3 1.7 9.5 88.3

PC4 0.9 5.1 93.4

⁞
⁞

⁞
⁞

⁞
⁞

⁞
⁞

PC12 0.1 0.0 100.0

Rank PC Counter Variable Weight

1 PC1 % CPU Time 0.974

2 PC1 % Disk Time 0.872

3 PC1 Disk Write/sec 0.866

4 PC1 Available Bytes 0.746

5 PC1 Pages/sec 0.644

6 PC1
Database Cache

Request/Sec
0.433

7 PC2
Network Interface

Bytes Total/sec
0.212

To eliminate PCA bias towards those variables with a

larger variance, we standardized the performance counter via

Unit Variance Scaling, i.e. dividing the observation of each

counter variable by the variable‟s standard deviation [6].

Thus, after standardizing, the variance of each performance

counter variable is equal to 1.0.

Signature Generation: Let us explain the signature

generation phase with an example. Assume we have 18

performance counters and we want to generate a signature

(with a reduced size) out of these counters. TABLE II shows

the partial results of applying PCA to our example

performance counter data. PCA projects the 18 counters into

12 PCs. The eigenvalue measures how much of the variation

in the dataset is explained by each PC. For example, PC1

accounts for 11.431/18*100=63.60% of the variability of the

entire performance counter dataset. To reduce the number of

variables, we need to decide on the minimum number of

components (top x) among the 12 PCs that capture sufficient

variability of our performance counter data. Deciding on the

top x PCs is a challenging problem. In this paper, we use “%

Cumulative Variability” for selecting the top x [9]. Based on

[6], using a 90% Cumulative Variability is adequate to

explain most of the data with minimal loss in information.

Thus we extract the first four PCs shown in TABLE II, as the

top x component to represent our performance counter data.

Now, the load test data can be represented by relatively few

PCs (4 PCs in this example rather than the original 12 PCs or

18 original counters). After reducing the dimensions of the

performance counter dataset, we decompose the top x PCs,

i.e. PC1 to PC4 in the above example, using the eigenvector

decomposition technique [6]. We decompose the PCs to map

them back to the performance counters. Mapping is required

because performance analysts are interested in performance

counters not principal components. Each performance

counter is given a weight between 0 and 1, in accordance to

its association with a component. Association of a

performance counter with a PC reflects the amount of

variance that the counter adds to the PC, (i.e. the larger the

weight of a performance counter the more it contributes to a

PC). We use these weights to construct a performance

signature by selecting the important performance counters

from the top x components.

To select the important counters from the top x

components, we kept the „weights‟ as a tuneable parameter.

Lowering the value of the „weight‟ parameter leads to more

performance counters being selected from PCs, hence a large

signature is created. In this example, we set a low „weight‟

parameter=0.2 that yield top 7 counters. Tuning the

parameter to 0.4 and 0.6 results in 6 and 5 counters TABLE

III shows seven performance counters out of 18 that are

selected and ranked according to their weights. These seven

counters capture the most important characteristics of the

respective load test and act as its performance signature.

Deviation Detection: After automatically creating the

performance signatures from performance counter data of a

baseline load test, our approach extracts the same set of

performance counters from the „new tests‟. Next, the

approach compares both sets of signatures. The comparison

is based on the performance counter weights. If the

performance counter weights of the baseline signature are

different from the „new load test‟, this mismatch in weights

implies that the actual distribution(s) of the performance

counters values in the two load tests are different. Hence, the

approach marks the new load test as deviated.

Our previous study [10] showed that PCA, as a variance-

based algorithm, requires at least 40 observations of

performance counter values to create a performance

signature. Therefore, the effectiveness of our PCA approach

depends on the sampling intervals, set by the performance

analyst. For example, by collecting performance counter

samples (observations) per minute, our approach is able to

detect performance deviations (if any occurs) after 40

minutes. However, if the sampling interval is set to every 5

seconds, the performance deviations are detected within 3.5

minutes time frame.

D. WRAPPER Approach

Motivation: Random, clustering, and PCA approaches

are all unsupervised approaches. To have a more thorough

empirical study, we introduce our WRAPPER approach. It

requires the intervention of the performance analyst in the

data preparation phase and thereby is supervised and may be

considered as a semi-automated approach.

Data Preparation: Similar to the unsupervised

approaches, the performance counter data of the supervised

approach needs to be sanitized from missing and empty

performance counter variables. Moreover, specifically for the

supervised approach, the performance counter data of the

baseline load test needs to be labeled as passed or failed for

each normal and anomalous observation respectively. The

data is expected to be labeled once by the load

testers/performance analyst, based on their experience and

previous load test results. Thus, labeling is done once and it

is used several times later on. Note that both the baseline test

and the new test should be sanitized in the data preparation

phase. However, only the baseline test needs to be labeled

once manually.

Signature Generation: In this approach, we use a

wrapper-based attribute selection technique [11] for

signature generation (WRAPPER). Wrapper-based attribute

selection has shown promising results in the software

engineering literature [11]. However it is concluded in [12],

TABLE IV. IDENTIFYING IMPORTANT PERFORMANCE COUNTERS

No Performance Counter Variables
10-Fold

Selection

Count=

5

%

Freq>20

1 % CPU Time 10

2 % Disk Time 10

3 Disk sec/Write 1

4 Available Bytes 2

5 Pages/sec 5

6 Database Cache Request/Sec 4

7 Network Interface Bytes

Total/sec

5

8 % CPU Idle Time 6

9 Datagram Rec/sec 1

⁞ ⁞ ⁞ ⁞ ⁞

18 Avg. Disk Read Queue Length 0

that there is no “one best attribute selection” approach that

works for any type of data. Our WRAPPER approach is the

first attempt for applying an attribute selection on

performance counters of large scale systems, which can be

studied more in the future. Due to the lack of space,

interested readers are advised to find the complete

description of a wrapper-based attribute selection approach

in [11]. In a nutshell, in this technique, a search algorithm

(e.g., a greedy or genetic search algorithm) is usually used to

optimize the selection of the subset of the attributes, with

respect to the accuracy of their prediction. The accuracy of a

subset is measured by a prediction model, e.g., OneR,

decision tree, or regression model.

In this paper, we use a very basic wrapper-based attribute

selection (OneR - genetic search), which can potentially be

improved in future experimentations. OneR is chosen as the

most basic prediction model. We use a genetic search

implemented in Weka to maximize the prediction accuracy

of the subset. Basically, the fitness function of the Genetic

search is the accuracy of the OneR model made by the

selected attributes. To keep our WRAPPER approach as the

most basic supervised approach, we did not tune the

parameters for the Genetic search. We simply reused Weka‟s

recommended values (crossover probability=0.6 and

mutation probability=0.033, maximum generation=20, and

population size=20). The attribute selection is validated by a

standard 10-fold cross validation process, which starts by

partitioning the input performance counter data to 10 folds.

The wrapper selection algorithm takes one partition (fold) at

a time as the test set and trains on the remaining nine

partitions. The output of applying the wrapper-based

attribute selection on each fold is a set of performance

counters. These counters are the best performance deviation

predictors recommended by the WRAPPER approach.

We then select the top k performance counters, which are

selected most in the 10 folds. These top k counters form the

performance signature for the corresponding load test. The

frequency for each performance counter variable is

calculated based on the number of times it appears in the

folds divided by the total number of folds. Selecting the top k

is based on one of the two heuristics: “% Frequency”, i.e.,

the minimum percentage of times that the performance

counter is selected in the 10 folds, or “Count”, i.e., the exact

number of counters desired. TABLE IV shows the results of

our supervised signature generation for the same example of

performance counter data used in section II.C. In TABLE

IV, we show two signatures which are generated by: a)

specifying Count=5, which results in a signature consisting

of performance counters 1, 2, 5, 7 and 8, and b) specifying

frequency as %Frequency>20, which results in the

performance counters that appear in at least three folds, out

of 10 folds, i.e. performance counters 1, 2, 5, 6, 7 and 8. We

choose %Frequency>20 to be consistent with the 80% of top

k performance counter selection by setting weight parameter

to 0.2 in the PCA approach.

Deviation Detection: In this phase, the observations for

the performance counters of the signature are extracted from

the baseline load test. Then the extracted data is given to a

logistic regression [13], as a training set, to build a

classification model for performance anomaly detection.

Finally, the signature‟s observations from the new load test

are classified into passed or failed using the regression

model. The logistic regression is chosen as a basic and state

of practice technique in the classification and prediction

literature in software engineering [13] and can be switched

with any other classification technique that shows better

results in future experimentations.

III. CASE STUDY

The main goal of this case study is to investigate and

compare the effectiveness of our approaches for analyzing

the load test result of large scale systems. So we shape our

goal as this research question:

RQ. How effective are our signature-based approaches in

detecting performance deviations in load tests?

Motivation: An approach with low recall won‟t be

adopted in practice since it fails to detect many of existing

deviations. An approach that produces results with high

recall and low precision is not useful either since it floods the

performance analysts with too many false positives. An ideal

approach should predict a minimal and correct set of

performance deviations. We evaluate the performance of our

approaches using precision, recall and F-measure.

A. Subjects of Study and Environment Setup

TABLE V lists the systems studied in this paper. In this

section, we describe the environment setup for these systems.

The Industrial System: We used a subsystem of an ultra

large industrial software system in the domain of telecom

that supports millions of concurrent users.

TABLE V. THE SUBJECTS OF THE STUDY

No System Domain Type of Data

1
Industrial

System
Telecom

Production data

Data from our experiments on

the company‟s testing platform

2 Open Source
E-

commerce

Data from our experiments

with an open source

benchmark application

TABLE VI. FAULTS INJECTED IN OUR LOAD TEST EXPERIMENTS

Category Failure Trigger Faults Exp. Id

Software

Failures

Resource

Exhaustion

1. CPU Stress 1

2. Memory Stress 2

System Overload 3. Abnormal Workload 3

Operator

Errors

Configuration

Errors

4. Misconfigured Load

Generator
4

Procedural Errors

5. Interfering Workload 5

6. Unscheduled

Replication
6

TABLE VII. LOAD TEST CONFIGURATION FOR DELL DVD STORE (DS2)

Parameter Value

Testing duration 1 hour

Number of driver (load generator) threads 50

Startup request rate (load ramp-up rate) 5

Think time (time to complete an order) 30 sec

Database size 100MB

Percentage of new customers 15%

Average number of searches per order 3

Average number of items returned in each search 5

Average number of items per order 5

We obtained two sets of load test counter data for their

subsystems.

a) Production data: obtained from the performance

repository of the industrial system under study. The load

testing is performed by the company experts.

b) Testbed data: obtained during a load test conducted by

us using the company‟s testbed.

The Open Source System: The second system under

study is Dell DVD Store (DS2) application, which is an open

source prototype of an online e-commerce website. It is

designed for benchmarking Dell hardware. It includes basic

e-commerce functionalities such as user registrations, user

login, product search and purchase. DS2 consists of a back-

end database component, a web application component, and

a driver program (load generator). DS2 has multiple

distributions to support different languages such as PHP,

JSP, and ASP and databases such as MySQL, Microsoft SQL

server, and Oracle. In this case study, we use the JSP

distribution and a MySQL database(s). The JSP code runs in

a Tomcat container. Our load consists of a mix of

transactions, including user registration, product search and

purchases. The configuration of our DS2 load generator for

the baseline load test in our experiments is listed in Table

VII, to enable the replication of our experiments.

B. Fault Injection

To study our approaches on realistic situations, we must

evaluate them in the presence of representative faults. To do

so, we first need to choose the category of faults, e.g.

software failures, hardware failures and operator/human

errors. Secondly we need to decide on the failure triggers for

each category, e.g. software failures could be triggered by

resource exhaustion, logical errors or system overload. Pretet

[14] performed a detailed study on failure occurrences in an

enterprise web service system and concluded that 80% of the

failures are due to software failures and human errors.

Therefore, in this paper, we use these categories for our

experiments. Pretet have also listed the seven most common

triggers for software failures and human error failures.

Among them, we used four failure triggers that fit into our

load test experiments, which are listed in Table VI. Below,

we explain why we choose the failure triggers listed in Table

VI and their relation to load testing.

Resource Exhaustion: Large enterprises report resource

exhaustion as one of the fundamental field problems [15].

Researchers, also, have identified that post deployment

problems are rarely due to functionality errors, rather, they

are often due to resource saturation problems causing

applications not to respond fast enough, crash, or hang under

a heavy load.

System Overload: Performance analysts often have to run

numerous tests for every release or build of an application

for specific workloads under particular hardware and

software conditions [3]. They have to carefully analyze the

test to ensure that the system is not overloaded and is

meeting its desired SLA, e.g., response time or latency.

Configuration Errors: One of the most common reasons

of load test failures is the misconfiguration of an application

under test or its execution environment. For example,

databases, web servers or load generators may be

misconfigured due to time pressure or complex

configuration.

Procedural Errors: Procedural errors are the second

major source of failures in the operator error category [14].

Load test procedural errors happen when the analyst/tester

does not follow guidelines and processes for conducting a

load test. For example, the tester forgets to restart a web

service or to initialize database tables before the start of a

load test. Similarly one of the most common causes of

triggering procedural errors in large scale systems is when a

tester forgets to suppress/change the schedule of background

interfering loads, e.g. the start of the antivirus or a database

replication during the course of a load test [16].

C. Experiment Design

We designed seven experiments to answer our research

questions. We used the framework of Thakkar [15] to

automate the load tests and to ensure that the environment

remains constant throughout the experiments. We used

Thakkar framework due to its simplicity and previous

success in practical performance testing [15].

Except for experiment 7, which consists of production

data obtained from the industrial partner, all other load test

experiments are repeated 10 times to ensure the consistency

among our findings. The ramp-up and ramp-down (warm up

and cool down) periods were excluded from the load test

analysis, as the system usually is not stable at these periods.

We used windows tool to collect the performance data

periodically after every 10 seconds (sampling interval). This

means that each industrial experiment conducted on the

testbed has 2,880 observations as these tests lasted for 8

hours. However, all the experiments conducted on the DS2

benchmark application are one-hour tests and contain 360

observations per performance counter. We now detail the

settings of each experiment for the faults listed in TABLE

VI.

Experiment 1 (CPU Stress): Experiment 1 investigates

the software failure category by triggering resource

exhaustion. For experiment 1, we ran a load test with a

baseline workload. Then we slowed down the CPU of the

web server using a CPU stress tool, known as winThrottle

[17]. We choose winThrottle over other CPU stress tools

because it is an open source tool and can use features in

system hardware that directly modify the CPU clock speed,

rather than using software “delay loops” or “HLT

instructions” to slow down the machine.

Experiment 2 (Memory Stress): For experiment 2, we

conducted a load test with the same workload as the baseline

load test, but injected a memory bug into the webserver using

a customized open-source memory stress tool called EatMem

[18]. The tool allocates a random amount of available

memory at recurring intervals to mimic a memory leak.

Experiment 3 (Abnormal Workload): This experiment is

conducted using the DS2 system. We trigger a system

overload, the second common failure trigger identified by

Pretet [14]. This experiment keeps the workload-mix

constant and increases the execution rate of our workload to

4X, i.e. four times as the baseline configuration.

Experiment 4 (Misconfigured Load Generator): This

experiment uses the testing platform to mimic the problems

resulting from misconfiguration of the load generator.

Therefore, we configure the load generator to push a

different workload-mix than the baseline workload.

Experiment 5 (Interfering Workload): This experiment

aims to trigger a procedural error for a load test. We created

an interfering background workload fault, where the tester

forgets to reschedule an antivirus scan that conflicts with the

timing of the load test. We scanned one of the web server

machines with an antivirus every 10 minutes for 3 minutes

over the course of one hour to perturb the main workload.

Experiment 6 (Unscheduled Replication): This

experiment also aims to trigger a procedural error for a load

test. We mimic the scenario where the tester forgets to

reschedule the database replication over the course of a load

test. We set the replication time to coincide with the start and

stop time of the load test.

Experiment 7 (Production Data): This experiment was

conducted on the production data. Performance analysts gave

us two sets of performance counter data: a baseline and a

deviated load test, without revealing the type of faults.

D. Measuring the Effectiveness of Our Proposed

Approaches

To evaluate the effectiveness of our approaches, we use

the following measures: Precision, Recall and F-Measure.

Precision is the ratio between correctly detected performance

deviations and predicted performance deviations between the

two load tests. Recall is defined as the ratio between the

number of correctly detected performance deviations and the

number of actual performance deviations for a load test. F-

Fig. 3. Illustration of our effectiveness measures

measure is defined as a harmonic means of precision and

recall. F-Measure = (
 . The value of alpha () ranges between

0 and infinity to give varying weights for recall and

precision. For example, in this paper, to indicate that recall is

as important as precision, alpha has a value of 1.0. These

definitions are directly applied to the output of the control

chart (random and clustering- approaches) and logistic-

regression (WRAPPER approach), where the classifications

are done per observation (i.e., for each observation, one can

define whether the prediction is true or false positive).

However, the PCA approach cannot predict performance

deviations for one single observation. Since as noted earlier,

PCA requires a certain minimum number of observations to

construct a performance signature [16].

Therefore, throughout our load test analysis with the

PCA approach, we divide the load test into time intervals.

Fig. 3 shows a performance counter data of two load tests.

The performance counter data for each load test is divided

into equal time intervals from t1 to t10. For load test-2, a

failure is injected during time intervals t3, t4 and t5.We use

Fig. 3 as an example to explain how we can measure the

precision and recall of the PCA approach. An ideal approach

should only report the intervals at which the deviations

occurred O={t3, t4, t5}. Assume we take Test-1 as a baseline

and apply the PCA deviation detection approach on Test-2

and detect performance deviations between two tests at time

intervals P={t1, t2, t3, t4}. Based on these definitions we

define: Recall = |P∩O|/|O| and Precision = |P∩O|/|P|.

Therefore, in the above example, Recall=2/3=0.67,

Precision=2/4=0.5, and F-Measure=0.57.

E. Case Study Results

We report our findings regarding our research question:

RQ1. How effective are our signature-based approaches in

detecting the performance deviations in load tests?

The results of the four approaches (Random:R,

Clustering:C, PCA:P, and WRAPPER:W) for all seven

experiments are reported in TABLE VIII in terms of

precision, recall and F-measure (for the first six experiments

the values are the average of the 10 runs per experiment).

The “Total Counter” column in TABLE VIII shows the total

number of performance counters collected for the

corresponding experiment. The “Sig. Size” column represents

the number of performance counters in the signature for each

approach. The choice of Sig. Size is based on two factors.

The main constraint on the size comes from practicality. As

TABLE VIII. THE EFFECTIVENESS OF SUPERVISED AND UNSUPERVISED DEVIATION DETECTION APPROACHES FOR LOAD TESTING WITH SMALL FINGERPRINT

Exp.
Precision Recall F- Measure Sig. Size Total Counter

W P R C W P R C W P R C

1 0.99 0.88 0.2 0.69 1 0.8 0.77 0.79 0.99 0.84 0.32 0.74 20 220

2 0.88 0.81 0.2 0.7 0.87 0.9 0.69 0.8 0.87 0.85 0.31 0.75 20 220

3 0.94 0.66 0.27 0.69 0.91 0.8 0.79 0.75 0.92 0.72 0.40 0.72 20 220

4 0.98 0.5 0.22 0.32 0.92 0.8 0.74 0.75 0.95 0.62 0.34 0.45 5 18

5 0.95 1 0.29 0.7 0.92 0.8 0.76 0.82 0.93 0.89 0.42 0.76 15 110

6 0.92 0.9 0.18 0.7 0.95 0.9 0.69 0.82 0.93 0.90 0.29 0.76 20 110

7 1 0.9 0.2 0.79 1 0.9 0.72 0.8 1 0.90 0.31 0.79 9 92

Avg. 0.95 0.81 0.22 0.65 0.94 0.84 0.73 0.79 0.94 0.82 0.34 0.71 16 141

Fig. 4. Effectiveness of supervised (WRAPPER) and unsupervised (PCA)

approaches over signature size for representative examples

discussed, performance analysts of our industrial partner

advised us that they consider 20 performance counters as a

maximum manageable size in the analysis of load tests. Any

increase in the number of performance counters beyond 20

negatively affects the human capability to effectively

conduct root-cause analysis in limited time. Based on their

input, we limited the signature size to maximum of 20

performance counters. The other factor that affects the size

of signatures is the method that our PCA approach uses for

signature generation, the“% Cumulative Variability”. As

discussed in II.C, we set the PCA threshold for selecting

counters from PCs as 0.2 to extract 80% of cumulative

variation in the counters.

We apply the same threshold for the WRAPPER

signature generation to get the counters represented in the

80% of the folds. Finally, we set the common signature size

for all approaches per experiment as the minimum of <20,

the PCA‟s signature size using 0.2 threshold, the Wrapper‟s

signature size using 80% threshold>. TABLE VIII shows

that “Sig. Size” ranges from 5-20 in the seven experiments.

Regardless of the signature size per experiment, we want to

evaluate the effectiveness of our approaches on deviation

detection. The results show, as expected, Random deviation

detection has the lowest effectiveness (precision, recall, and

the F-measure). Among the clustering and PCA approaches,

the PCA approach almost always performs significantly

better. Comparing the supervised approach (WRAPPER)

and the best unsupervised approach (PCA) we can see that

the supervised approach dominates the unsupervised

approach in terms of precision, recall, and the F-measure.

The next observation from the results is the excellent balance

of high precision and recall of both the WRAPPER and PCA

approaches (on average 0.95, 0.94 and 0.81, 0.84

respectively). However, the supervised approach (WRAPP-

ER) is still more effective than the best unsupervised

approach (PCA).

IV. DISCUSSION

We now discuss the practical differences between our

best unsupervised (PCA) and supervised (WRAPPER)

approaches.

A. Manual Overhead

The WRAPPER approach outperforms the PCA

approach in terms of precision/recall. However, WRAPPER

requires all observations of the baseline performance counter

data to be labeled as passed/failed. Such labeling is required

for the training of this supervised approach. In practice,

however, this is an overhead for analysts that rarely have

time to manually mark each observation of the performance

counter data. Therefore, tool support is needed to help

analysts partially automate the labeling, whereas, the PCA

approach does not require any such human intervention.

B. Real Time Analysis

We refer “real-time analysis” as the ability of an

approach to process the performance counter data as it

arrives, in order to detect performance deviations. The

WRAPPER approach is more real-time than the PCA

approach. The WRAPPER approach detects the load test

performance deviations on a per-observation basis. Whereas,

the PCA approach requires a certain amount of observations

(wait time) before it can detect any performance deviations

for a load test [10].

C. Stability

We refer to “stability” as the ability of an approach to

remain effective while its signature size is reduced. We find

that the WRAPPER approach is more stable than the PCA

approach. This means that a slight increase/decrease of its

signature size smoothly increase/decrease the effectiveness

of the approach. To investigate the stability of the

approaches, we plotted (only for Exp-1 and Exp-2 for the

sake of space limitations) the F-measure over signature size,

from size 1 to the size selected by each approach, covering

80% of the variation (0.2 for the PCA variation threshold and

80% for the WRAPPER frequency threshold). As shown in

Fig. 4, the WRAPPER approach exhibits a very smooth

decrease (stable), when reducing the signature size, for most

of the experiments. However, the PCA approach has

0.7

0.75

0.8

0.85

0.9

0.95

1

79 70 60 50 40 30 20 10 4 2

F-
M

ea
su

re

Signature Size

Exp-1

-----PCA
 Wrapper

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

60 50 40 30 20 10 4 2

F-
M

ea
su

re

Signature Size

Exp-2

-----PCA
 Wrapper

drastically sharp drops in effectiveness as the signature size

is reduced. In addition, unlike the WRAPPER approach, in

many cases (circles in Fig.4), decreasing the signature size(s)

results in an increase of its effectiveness, followed by a

sudden drop (unpredictable trend). Instability of the PCA

approach with respect to reducing the signature size affects

its practicality. As a first step to explore the stability

differences between the proposed approaches, we looked into

the selected performance counters of the signatures provided

by the WRAPPER and PCA approaches. We compared the

signatures of the WRAPPER and PCA approaches for all

seven experiments (with signature sizes generated by the 0.2

and 80% thresholds for the PCA and WRAPPER approaches

respectively). On average (for our seven experiments), the

performance signatures of both approaches share 80%

common performance counters. On a closer look, we found

that 20% of the performance counters were different because

each approach picked up the important performance counters

at different granularities within the same category. We

illustrate what granularity and category means by a real

example from the case study. In experiment 1, where we

stressed the CPU of the database servers, the WRAPPER

approach picked one of the performance counters that

exactly captures the processor time for the MySQL server of

the database machine. Whereas, the PCA approach picked up

a performance counter at a coarser granularity, i.e., the total

processor time for the database machine. Both of these

performance counters are essentially measuring the same

category, i.e. CPU, but at different granularity. Therefore, the

difference between the granularities of the performance

counters in the two signatures might be a possible reason for

the differences in their effectiveness.

In addition, we found that the order of the 80% common

performance counters is different in the PCA and

WRAPPER signatures. In the PCA signature, the

performance counters are ranked based on their weights in

the PCs. Whereas, the WRAPPER approach ranks the

performance counters based on which performance counters

are selected the most in the 10 folds during the prediction

step. Since the regression technique used by our WRAPPER

approach is sensitive to the ordering of the variables, this

difference in the ordering might be another possible cause for

the differences between the effectiveness of these two

approaches, which again requires further studies.

V. LIMITATIONS AND THREATS TO THE VALIDITY

Hardwar Differences: In practice, large scale systems

have many testing labs (testbeds) to run multiple load tests

simultaneously to speed up the testing. Labs may have

different hardware. Therefore, if the baseline load test was

conducted in one lab, and another similar load test, without

any performance deviation, is conducted at different lab, our

approaches may interpret them as deviated from each other.

Recent work by Foo [5] proposes several techniques to

overcome this problem.

Sensitivity: We can tune the sensitivity of our approaches

to uncover small fluctuations. For example, in the

WRAPPER approach, the labeling phase by the analyst

decides how big the deviation should be to be flagged. In the

PCA approach, the threshold that decides whether two

performance counter weights in the signatures are the same

or not is the tuner. Finally, in the control chart, the LCL and

UCL values define the deviations. Though lowering

sensitivity reduces false alarms, it may overlook some

important outliers. However, this is a general problem and an

automated technique, generally, cannot decide whether a

given outlier is a noise or an important deviation, only based

on performance counter data.

Construct Validity: Since our approaches are evaluated,

in six out of seven experiments, based on injected faults, we

tried to reduce the construct validity threat by being

systematic with the fault injection process. Despite our

careful fault injection mechanism, the types of the injected

faults may not be fully representative of real faults.

Internal Validity: This study required various sets of

configurations (test environment settings), implementations

(supervised and unsupervised signature generations), and

data analysis (data handling and statistical analysis).

Therefore, to reduce the internal validity threat we used

existing frameworks (e.g., Thakkar framework for

automating the load test executions), tools (e.g., Weka for

implementing the WRAPPER approach) and packages (e.g.,

R statistics packages for PCA implementation study).

Conclusion Validity: Experiments 1-6 are executed 10

times each and the average of the results is taken for

comparison among different approaches. However, the

differences among the approaches might be by chance due to

random nature of the experiments. We plan to extend the

study with more runs per experiment so that statistical

significant test can be meaningfully applicable.

External Validity: We used one large industrial and one

open source benchmark application to reduce the threat. But,

our approaches cannot be generalized to any other systems

especially in other domains without its replication.

VI. RELATED WORK

How to automate performance monitoring and analysis of

an enterprise system is not a new problem. However, there is

little work done in pre-diagnosis (load, stress and

performance regression testing) of performance problems in

large scale systems. Most of the work in the literature is post-

deployment centric, focusing on automatic field problem

diagnosis and monitoring techniques. Our work is pre-

deployment centric and aims to uncover performance

problems in a load test.

The closest work to us, i.e., load test analysis, is the work

done by Jiang [3] and Foo. [5] to automate the analysis of

load test results. Unlike our work, Jiang relies on execution

logs [3]. The execution logs capture detailed information.

However, such logs are vendor and application specific. This

means, that different subsystems in a large scale system (e.g.

web servers, databases, and mail servers) produce a variety

of execution logs, each with different levels of information

and formats. Whereas, the performance counters data,

provide a greater level of unification across subsystems and

systems. Similar to our work, Foo et al. used performance

counters to find deviations between load tests [5]. Their

approach requires discretization of performance metrics into

levels (e.g. high/medium/low). Such level-based

discretization of metrics fails to capture fine-grained

performance deviations in a load test.

There exists some work, though not directly targeted at

load test analysis that can be potentially used in the testing

domain to assist practitioners in load test analysis. Among

them, the work that inspired our PCA approach is the work

by Sandeep et al. [16]. They used principal feature analysis

(PFA) to achieve data reduction and random forests to

characterize workloads. The main difference between their

PFA approach and our PCA approach is that, their work is

partially automated and requires continuous training to

produce accurate results. With the same objective, Huck and

Malony [8] proposed a performance data mining framework

for large-scale parallel computing. The framework tries to

manage data complexity by using techniques such as

clustering and dimensionality reduction. This data mining

framework uses random linear projections and PCA to

reduce performance data. Unlike our PCA approach, the

framework does not transform the PCs back to individual

performance counters making it harder for performance

analysts to act on its findings. In our previous work [6], we

introduced our unsupervised approach based on PCA. In this

paper, we extended that work by exploring new deviation

detection approaches (more basic unsupervised approaches

as baselines and a supervised approach for comparison) and

empirically compared them with our PCA approach. We also

conducted a more extensive case study and carefully studied

the results with respect to signatures size and practicality.

VII. CONCLUSION AND FUTURE WORK

Manually analyzing the load testing results for large scale

systems is error-prone and inefficient due to the large volume

of performance data and time pressure. Furthermore, limited

knowledge of an analyst about such large systems under test

may increase the difficulty of the analysis. In this paper, we

proposed one supervised and three unsupervised approaches

to automate the analysis of load test in large scale systems.

Our approaches select a subset (called signature) of

performance counters for a load test. The signature acts as a

unique fingerprint for the load test and compares it with

signatures from baseline load tests. A large case study on a

real world industrial software system as well as a benchmark

open source system provides empirical evidence of the

ability of our approaches to uncover the performance

deviation in load tests. As future work, we plan to do a larger

study where we look at different combinations of possible

approaches for signature generation (dimension reduction)

and deviation detection to understand the importance of each

step and maximize the effectiveness of the overall approach.

ACKNOWLEDGEMENT

We are grateful to BlackBerry for giving us access to the

enterprise application used in our case study. The findings

and opinions expressed in this paper are those of the authors

and do not necessarily represent or reflect those of

BlackBerry and/or its subsidiaries and affiliates. Moreover,

our results do not in any way reflect the quality of

BlackBerry‟s software products. We are thankful to

Parminder Flora from BlackBerry for his guidance in

understanding the studied enterprise application, conducting

the load tests and his thoughtful feedback on this paper.

REFERENCES

[1] L. H. Lin, A. Tanyavutti and S. Jindrapacha, "Analyzing eBay platform

strategies: An application of meyer's product platform strategy model,"

in Management of Engineering and Technology, Portland International
Center for, pp. 125-142.

[2] Z. M. Jiang, A. E. Hassan, G. Hamann and P. Flora, "Automated

performance analysis of load tests," in IEEE International Conference
on in Software Maintenance, ICSM 2009, pp. 125-134.

[3] Z. M. Jiang, "Automated analysis of load testing results," in

Proceedings of the 19th International Symposium on Software Testing
and Analysis, Trento, Italy, 2010, pp. 143-146.

[4] H. Malik, Z. M. Jiang, B. Adams, A. E. Hassan, P. Flora and G.
Hamann, "Automatic comparison of load tests to support the

performance analysis of large enterprise systems," in 14th European

Conference on Software Maintenance and Reengineering, Madraid,
Spain, 2010, pp. 222-231.

[5] K. C. D. Foo. Automated discovery of performance regressions in

enterprise applications. 2011. Available:
http://sail.cs.queensu.ca/publications/pubs/masterthesis2011_foo.pdf.

[6] H. Malik, B. Adams, A. E. Hassan, P. Flora and G. Hamann, "Using

load tests to automatically compare the subsystems of a large enterprise
system," in IEEE Computer Software and Applications Conference,

Seoul, Korea, 2010, pp. 117-126.

[7] T. H. D. Nguyen, B. Adams, Z. M. Jiang and A. E. Hassan, "Automatic

Load Test Verification Using Control Charts" In Proceedings of

the 18th Asia Pacific Software Engineering Conference, 2011.

[8] K. A. Huck and A. D. Malony, "PerfExplorer: A performance data
mining framework for large-scale parallel computing," in Proceedings

of the ACM/IEEE SC Supercomputing Conference, 2005, pp. 41-41.

[9] I. Jolliffe, Principal Component Analysis. Springer verlag, 2002.
[10] H. Malik, B. Adams and A. E. Hassan, "Pinpointing the subsystems

responsible for the performance deviations in a load test," in IEEE

21st International Symposium on Software Reliability Engineering
(ISSRE), San Jose, California, USA, 2010, pp. 201-210.

[11] J. Leng, C. Valli and L. Armstrong, "A Wrapper-Based Feature

Selection for Analysis of Large Data Sets," ECU Publications, 2010.
[12] M. A. Hall and G. Holmes, "Benchmarking attribute selection

techniques for discrete class data mining," IEEE Transactions on

Knowledge and Data Engineering, 2003, vol. 15, pp. 1437-1447,
[13] A. Podgurski, D. Leon, P. Francis, W. Masri, M. Minch, J. Sun and B.

Wang, "Automated support for classifying software failure reports," in

Proceeding of 25th International Conference on Software Engineering,

2003, PP. 465-475.
[14] S. Pertet and P. Narasimhan, "Causes of failure in web applications,"

Parallel Data Laboratory, Carnegie Mellon University, CMU-PDL-05-
109.

[15] D. Thakkar, A. E. Hassan, G. Hamann and P. Flora, "A framework for

measurement based performance modeling," in Proceedings of the 7th
International Workshop on Software and Performance, Princeton, NJ,

USA, 2008, pp. 55-66.

[16] S. R. Sandeep, M. Swapna, T. Niranjan, S. Susarla and S. Nandi,
"CLUEBOX: A Performance Log Analyzer for Automated

Troubleshooting," 18-2008.

[17] M. Leyda and R. Geiss "WinThrottle," 2010.
[18] J. McCaffrey, [online]. 2013(Mar 25th), Available:

 http://msdn.microsoft.com/en-us/magazine/cc163613.aspx.

