
Automatic Detection of Performance Deviations in 

the Load Testing of Large Scale Systems
Haroon Malik

1
, Hadi Hemmati

2
, Ahmed E. Hassan

1
 

1
 Software Analysis and Intelligence Lab (SAIL)  

School of Computing, Queen‟s University, Kingston, Canada 

{malik, ahmed}@cs.queensu.ca 
2
 David R. Cheriton School of Computer Science 

University of Waterloo, Waterloo, Canada 

hhemmati@uwaterloo.ca 

 

 
Abstract—Load testing is one of the means for evaluating the 

performance of Large Scale Systems (LSS). At the end of a 

load test, performance analysts must analyze thousands of 

performance counters from hundreds of machines under test. 

These performance counters are measures of run-time system 

properties such as CPU utilization, Disk I/O, memory 

consumption, and network traffic. Analysts observe counters to 

find out if the system is meeting its Service Level Agreements 

(SLAs). In this paper, we present and evaluate one supervised 

and three unsupervised approaches to help performance 

analysts to 1) more effectively compare load tests in order to 

detect performance deviations which may lead to SLA 

violations, and 2) to provide them with a smaller and 

manageable set of important performance counters to assist in 

root-cause analysis of the detected deviations. Our case study is 

based on load test data obtained from both a large scale 

industrial system and an open source benchmark application. 

The case study shows, that our wrapper-based supervised 

approach, which uses a search-based technique to find the best 

subset of performance counters and a logistic regression model 

for deviation prediction, can provide up to 89% reduction in 

the set of performance counters while detecting performance 

deviations with few false positives (i.e., 95% average precision). 

The study also shows that the supervised approach is more 

stable and effective than the unsupervised approaches but it 

has more overhead due to its semi-automated training phase. 

Index Terms—Performance, Signature, Machine Learning. 

I. INTRODUCTION  

Large scale systems such as Amazon, Ebay, Google and 

many modern web services are composed of thousands of 

machines running complex applications. These systems 

generate revenue by providing services, supporting a large 

user base. Therefore, any performance degradations in their 

systems can result in large monetary losses. For instance, an 

hour-long PayPal outage may have prevented up to $7.2 

million in customers transactions [1].  

To detect early performance problems in a system before 

they become critical field problems, performance analysts 

use load testing. Load testing, in general, refers to the 

practice of assessing a system‟s behavior under heavy load. 

Unfortunately, current load test analysis practices are 

laborious, time consuming and error prone. Existing research 

on load testing focuses primarily on the automatic generation 

of load test suites [2]. However, there is limited research on 

how to effectively analyze the load tests of LSS which 

generate terabytes of performance related data. 

During a load test, which may span over many days, 

usually one or more load generators simulate thousands of 

concurrent transactions [3].The application under test is 

closely monitored and a very large volume of performance 

counter data is logged. These performance counters capture 

the performance properties of the system, e.g. CPU 

utilization, disk I/O, queues and network traffic, at run-time. 

Such information is of vital interest to performance analysts. 

The information helps them observe the system‟s behavior 

under load by comparing against already documented 

behavior from past similar tests. In cases where such 

documented behavior does not exist, e.g., for a new 

component, product or a major release under test, 

performance analysts use their domain knowledge and 

experience to decide about the expected behavior. 

In our previous work [4], we introduced an unsupervised 

approach to automate the load test analysis. In this paper, we 

propose two additional unsupervised approaches, as 

comparison baselines, along with a new supervised approach 

for the same type of analysis. All four approaches use 

performance counter data obtained from a load test to 

construct performance signatures. These signatures are 

minimal sets of performance counters that describe the 

essential characteristics of a System Under Test (SUT) for a 

given load test. Analyzing the load data of signatures rather 

than the entire data helps to 1) effectively compare a load test 

with baseline tests in order to detect performance deviations, 

and 2) provide the analyst with a manageable set of 

performance counters for root-cause analysis. We identify 

the main contributions of this paper as: 

 We provide accurate and novel approaches for 

automatically detecting performance deviations in a load 

test, with minimum domain knowledge. 

 

 

 

 

 

Fig. 1.  A high level overview of our approach 
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 In both industrial and open-source settings, we 

empirically evaluate and compare the effectiveness of 

our approaches and show that we can achieve up to 95% 

average precision and 94% average recall.  

II. AUTOMATED ANALYSIS OF LOAD TESTS  

A typical load test consists of a) test environment setup, 

b) load generation, c) load test execution, and d) load test 

analysis, which is the focus of this paper. In practice, 

analysts use personal judgment together with the opinion of 

experts and senior analysts, to decide whether the results of a 

load test show any deviation from a baseline or not. 

However, extensive knowledge of the subsystems and their 

related counters is required for thoroughly analyzing the 

performance counter data and to timely isolate performance 

problems [5] [4]. Therefore, in this paper, we propose and 

compare automated approaches for performance deviation 

detection. These approaches help analysts analyze load test 

results more effectively, and provide them with a smaller and 

manageable set of important performance counters to assist 

in the root-cause analysis of the deviations. 

Our high-level approach, shown in Fig.1, is based on 

reducing the size of the performance counter data to a small 

signature and comparing the signature of a load test with the 

signature of its baseline test. As discussed, the signature-

based approach is chosen to assist the analyst in further root-

cause analysis. It is much easier to inspect a few performance 

counters than to inspect the entire (hundreds or thousands) 

set of counters that are recorded during a test. 

The deviation detection process starts with preparing 

performance data of the load test and the baseline test. One 

of the main reasons for data preparation is to deal with the 

„missing data‟. Due to the distributed nature of large scale 

systems, performance counter data may miss some data or 

contain empty counter variables. A performance counter data 

is missing when performance monitors fail to record some 

observations of a performance counter variable (e.g. % CPU 

Utilization) due to reasons such as bandwidth congestion, 

system freeze, or overflow of I/O buffers. A counter variable 

is entirely empty when a resource under monitoring cannot 

start the service for collecting counter values. We sanitize the 

performance counter data by removing empty counter 

variables. The missing performance counter data is handled 

through the use of list-wise deletion, i.e. excluding the entire 

record if any single performance counter value is missing in 

the record [6]. 

To shrink the data to the important counters, a 

performance counter signature is generated from the list of 

performance counters of the baseline test, which can be seen 

as a dimension reduction problem. Next, a similar set of 

counters is extracted from the new load test run. In case, a 

performance counter that is part of the baseline load test 

signature cannot be extracted from the new load test run, the 

respective performance counter is eliminated from the 

baseline signature. The signature cannot be extracted from 

the new load test due to numerous reasons such as: 

  

TABLE I.  OUR SIGNATURE AND DEVIATION DETECTION APPROACHES 

Type Signature generation Deviation detection 

Un- 

supervised   

Random sampling 
Control Chart 

Clustering (K-Means) 

PCA PCA Weights (loadings) 

Supervised  WRAPPER Logistic regression 

a) the removal of counter data during data preparation, b) the 

failure of logging as performance counter resources may 

become unavailable during the course of a test (unreachable 

due to bandwidth saturation or network problem), and c) the 

inability of the monitoring agent to start a thread at a 

monitoring station to sample a resource. Finally, the values 

of the signature (selected performance counters) of the 

current load test are compared with the baseline test data. 

The deviations are reported as anomalies and the signature is 

sent for investigation a part of the root-cause analysis.  

TABLE I summarizes our approaches. We use two basic 

dimension reduction algorithms, random and clustering, 

mostly as baseline of comparison for signature generation. 

We also introduce two more advanced approaches, one 

supervised (WRAPPER) and one unsupervised (PCA), to 

explore the possibility of improving the baselines. We keep 

the baseline deviation detection approaches as simple as 

possible by using the simple and yet effective control chart 

[7]. We could have used control charts for the advanced 

deviation detection approaches as well; however, we decided 

to use customized deviation detection techniques per 

approach to maximize their effectiveness. We use PCA 

weights for the PCA approach and logistic regression for the 

WRAPPER approach. These techniques make use of the 

readily available information per approach. In the rest of this 

section, we explain these approaches in more detail. 

Note that all these approaches require the data 

preparation step. In addition, the supervised approach needs 

the normal and abnormal performance counter values to be 

labeled in some baseline tests. However, the unsupervised 

approaches do not need any such extra knowledge.  

A. Random Sampling Approach 

Motivation: This approach uses a random sampling 

algorithm for signature generation and a control chart for 

performance deviation detection. The motivation behind this 

approach is to use the most basic baseline for comparing the 

performance against our other proposed anomaly detection 

approaches.  

Signature Generation: The simplest approach to reduce 

the performance counters and make a small signature is to 

randomly select some counters from the pool of all 

performance counters recorded during a load test. The only 

question left to answer for random sampling is the number of 

counters to select. We use 20 performance counters to 

construct a signature. This comes from our experience with 

practitioners (performance analysts of our industrial partner) 

and their “preferred” maximum manageable signature size. 

Note that, generally, this maximum size depends on the 

testers‟ preferences and the systems size. We also look into  



 
Fig. 2.  An example control chart  

the effect of signature size more carefully in the stability 

analysis section (section IV.C).   

Deviation Detection: In this approach, automatic 

detection of performance deviations between a baseline load 

test and a new load test is determined by comparing the 

performance signatures based on a statistical quality control 

technique called “control charts” [7]. Control charts use 

control limits to represent the limits of variation that should 

be expected from a process. When a process is within the 

controlled limits, any variation is normal. Outside limit 

variations, however, considered as deviations. We used 

control charts due to its previous success in analyzing load 

tests [7]. We drive the control limits of a control chart from 

the baseline load test, per performance counter. If there is 

any observed value of the counter of a new load test that 

violates the control limits, then the test is marked as 

deviated. For a given performance counter, the Central Limit 

(CL) of a control chart is the median of all values of the 

performance counter in the baseline test. The Upper/Lower 

Control Limit (U/LCL) is the upper/lower limit of the range 

of a counter under the normal behavior of the system. A 

common choice to detect performance violations using 

control charts is to use 10
th
 and 90

th
 percentiles to identify 

LCL and UCL [7]. A violation ratio, which is used as a 

threshold for deviation detection, is the percentage of the 

performance violations over the entire data points. 

Let us explain the use of control charts for deviation 

detection with an example. Fig. 2 shows an example where 

performance counter „A‟ of a baseline load test has eleven 

instances <11,10,5,6,7,8,6,10,13,9,3>. The LCL (10th 

percentile), CL (median), and UCL (90th percentile) for the 

baseline are 4, 8, and 12, respectively. The values of the 

counter for the new load test are <2,3,6,7,4,14,10,9,1,13,4>. 

The violations are load test values that are greater than the 

baseline‟s UCL (12) or smaller than its LCL (4). Hence, in 

this example, the violation ratio of the new load test is 

6/11=54%. Note that it is important to set the threshold 

higher than the violation ratio of the baseline load test itself 

(2/11= 18%). For example, assuming 20% as the threshold, 

the new load test is marked as deviated. 

B. Clustering (K-Means) Approach 

Motivation: Performance counter data for a load test is 

highly correlated. There are many counters that essentially 

measure a common performance characteristic. For example 

counters such as „Processor time‟, „Total processor time‟, 

and „processor total privileged time‟ are basically measuring 

the processor utilization. One of the most common practices 

for removing correlated parameters (in our case, performance 

counters) is clustering. Using a clustering algorithm, one can 

group performance counters based on a measure of 

similarities, such that the highly similar counters are in the 

same groups. Then, to reduce the dimensionality of the data 

and to generate a small signature, one can select one 

representative counter per group. We now detail the 

“signature generation” step of our “Clustering” approach. 

Signature Generation: The clustering algorithm used in 

our approach is the well-known K-Means [8]. It is chosen 

because of its simple implementation and the wide usage for 

numerical data clustering, especially performance data 

clustering [8].  

The K-Means clustering takes n performance counters 

and k number of clusters to find, as input. Each performance 

counter is represented by a vector of its values for different 

data items. The clustering algorithm groups the counters into 

k clusters with the objective of minimizing the squared error, 

the sum of the squared Euclidean distance of each vector 

from the centroid of its cluster. The signature of a baseline 

load test is then composed of the representative counters (the 

centroids of each cluster).  

Deviation Detection: This approach uses the same 

Control-Chart explained in the Random-Sampling approach. 

C. PCA Approach 

Motivation: In this approach, Principal Component 

Analysis (PCA) [9], a robust and scalable statistical 

algorithm, is used as a more advanced technique compared to 

clustering in order to reduce the sheer volume of 

performance counters. Basically, the high level goal of using 

PCA in our context is the same as using clustering: selecting 

the least correlated subset of performance counters that can 

still explain the maximum variations in the data.  

The main objective of PCA is to reduce the 

dimensionality of the original data by projecting the data set 

onto a space of lower dimensionality. To do so, PCA re-

expresses the data using new variables which are a linear 

combination of the original variables (i.e., counters). The 

new variables, which are called principal components (PCs), 

are generated in a way that the top components can explain 

the variation in the data as good as the entire variable set. In 

addition, the new components have lower collinearity. 

Therefore, one can choose only a few top components and 

reduce the dimensionality of the data. More details on the 

PCA, its detailed implementation, and application on 

variable reduction can be found in [4]. 

In our previous work, we used PCA for the dimension 

reduction of performance data. Thus in this paper, we re-

apply that approach in a larger setting and on more cases. We 

also evaluate the PCA approach compared to the other newly 

introduced approaches of this paper. 

Data Preparation: Performance counters have different 

ranges of numerical values which result in different 

variances. PCA identifies those variables that have a large 

data spread ignoring those variables with low variance. 
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TABLE II.  PRINCIPAL 

COMPONENT ANALYSIS 
TABLE III.  PERFORMANCE 

SIGNATURE 

 Eigen

Value 

Variability 

PC (%) Cumulative 

PC1 11.4 63.5 63.5 

PC2 2.4 15.2 78.7 

PC3 1.7 9.5 88.3 

PC4 0.9 5.1 93.4 

⁞ 
⁞ 

⁞ 
⁞ 

⁞ 
⁞ 

⁞ 
⁞ 

PC12 0.1 0.0 100.0 
 

Rank PC Counter Variable Weight 

1 PC1 % CPU Time 0.974 

2 PC1 % Disk Time 0.872 

3 PC1 Disk Write/sec 0.866 

4 PC1 Available Bytes 0.746 

5 PC1 Pages/sec 0.644 

6 PC1 
Database Cache 

Request/Sec 
0.433 

7 PC2 
Network Interface 

Bytes Total/sec 
0.212 

 

To eliminate PCA bias towards those variables with a 

larger variance, we standardized the performance counter via 

Unit Variance Scaling, i.e. dividing the observation of each 

counter variable by the variable‟s standard deviation [6]. 

Thus, after standardizing, the variance of each performance 

counter variable is equal to 1.0.  

Signature Generation: Let us explain the signature 

generation phase with an example. Assume we have 18 

performance counters and we want to generate a signature 

(with a reduced size) out of these counters. TABLE II shows 

the partial results of applying PCA to our example 

performance counter data. PCA projects the 18 counters into 

12 PCs. The eigenvalue measures how much of the variation 

in the dataset is explained by each PC. For example, PC1 

accounts for 11.431/18*100=63.60% of the variability of the 

entire performance counter dataset. To reduce the number of 

variables, we need to decide on the minimum number of 

components (top x) among the 12 PCs that capture sufficient 

variability of our performance counter data. Deciding on the 

top x PCs is a challenging problem. In this paper, we use “% 

Cumulative Variability” for selecting the top x [9].  Based on 

[6], using a 90% Cumulative Variability is adequate to 

explain most of the data with minimal loss in information. 

Thus we extract the first four PCs shown in TABLE II, as the 

top x component to represent our performance counter data.  

Now, the load test data can be represented by relatively few 

PCs (4 PCs in this example rather than the original 12 PCs or 

18 original counters). After reducing the dimensions of the 

performance counter dataset, we decompose the top x PCs, 

i.e. PC1 to PC4 in the above example, using the eigenvector 

decomposition technique [6]. We decompose the PCs to map 

them back to the performance counters. Mapping is required 

because performance analysts are interested in performance 

counters not principal components. Each performance 

counter is given a weight between 0 and 1, in accordance to 

its association with a component. Association of a 

performance counter with a PC reflects the amount of 

variance that the counter adds to the PC, (i.e. the larger the 

weight of a performance counter the more it contributes to a 

PC). We use these weights to construct a performance 

signature by selecting the important performance counters 

from the top x components.  

To select the important counters from the top x 

components, we kept the „weights‟ as a tuneable parameter. 

Lowering the value of the „weight‟ parameter leads to more 

performance counters being selected from PCs, hence a large 

signature is created. In this example, we set a low „weight‟ 

parameter=0.2 that yield top 7 counters. Tuning the 

parameter to 0.4 and 0.6 results in 6 and 5 counters TABLE 

III shows seven performance counters out of 18 that are 

selected and ranked according to their weights. These seven 

counters capture the most important characteristics of the 

respective load test and act as its performance signature.  

Deviation Detection: After automatically creating the 

performance signatures from performance counter data of a 

baseline load test, our approach extracts the same set of 

performance counters from the „new tests‟. Next, the 

approach compares both sets of signatures. The comparison 

is based on the performance counter weights. If the 

performance counter weights of the baseline signature are 

different from the „new load test‟, this mismatch in weights 

implies that the actual distribution(s) of the performance 

counters values in the two load tests are different. Hence, the 

approach marks the new load test as deviated. 

Our previous study [10] showed that PCA, as a variance-

based algorithm, requires at least 40 observations of 

performance counter values to create a performance 

signature. Therefore, the effectiveness of our PCA approach 

depends on the sampling intervals, set by the performance 

analyst. For example, by collecting performance counter 

samples (observations) per minute, our approach is able to 

detect performance deviations (if any occurs) after 40 

minutes. However, if the sampling interval is set to every 5 

seconds, the performance deviations are detected within 3.5 

minutes time frame. 

D. WRAPPER Approach  

Motivation: Random, clustering, and PCA approaches 

are all unsupervised approaches. To have a more thorough 

empirical study, we introduce our WRAPPER approach. It 

requires the intervention of the performance analyst in the 

data preparation phase and thereby is supervised and may be 

considered as a semi-automated approach. 

Data Preparation: Similar to the unsupervised 

approaches, the performance counter data of the supervised 

approach needs to be sanitized from missing and empty 

performance counter variables. Moreover, specifically for the 

supervised approach, the performance counter data of the 

baseline load test needs to be labeled as passed or failed for 

each normal and anomalous observation respectively. The 

data is expected to be labeled once by the load 

testers/performance analyst, based on their experience and 

previous load test results. Thus, labeling is done once and it 

is used several times later on.  Note that both the baseline test 

and the new test should be sanitized in the data preparation 

phase. However, only the baseline test needs to be labeled 

once manually.   

Signature Generation: In this approach, we use a 

wrapper-based attribute selection technique [11] for 

signature generation (WRAPPER). Wrapper-based attribute 

selection has shown promising results in the software 

engineering literature [11]. However it is concluded in [12], 



TABLE IV.  IDENTIFYING IMPORTANT PERFORMANCE COUNTERS 

No Performance Counter Variables 
10-Fold 

Selection 

Count=

5 

% 

Freq>20 

1 % CPU Time 10   

2 % Disk Time 10   

3 Disk sec/Write 1   

4 Available Bytes 2   

5 Pages/sec 5   

6 Database Cache Request/Sec 4   

7 Network Interface Bytes 

Total/sec 

5   

8 % CPU Idle Time 6   

9 Datagram Rec/sec 1   

⁞ ⁞ ⁞ ⁞ ⁞ 

18 Avg. Disk Read Queue Length 0   

that there is no “one best attribute selection” approach that 

works for any type of data. Our WRAPPER approach is the 

first attempt for applying an attribute selection on 

performance counters of large scale systems, which can be 

studied more in the future. Due to the lack of space, 

interested readers are advised to find the complete 

description of a wrapper-based attribute selection approach 

in [11]. In a nutshell, in this technique, a search algorithm 

(e.g., a greedy or genetic search algorithm) is usually used to 

optimize the selection of the subset of the attributes, with 

respect to the accuracy of their prediction. The accuracy of a 

subset is measured by a prediction model, e.g., OneR, 

decision tree, or regression model. 

In this paper, we use a very basic wrapper-based attribute 

selection (OneR - genetic search), which can potentially be 

improved in future experimentations. OneR is chosen as the 

most basic prediction model. We use a genetic search 

implemented in Weka to maximize the prediction accuracy 

of the subset.  Basically, the fitness function of the Genetic 

search is the accuracy of the OneR model made by the 

selected attributes. To keep our WRAPPER approach as the 

most basic supervised approach, we did not tune the 

parameters for the Genetic search. We simply reused Weka‟s 

recommended values (crossover probability=0.6 and 

mutation probability=0.033, maximum generation=20, and 

population size=20). The attribute selection is validated by a 

standard 10-fold cross validation process, which starts by 

partitioning the input performance counter data to 10 folds. 

The wrapper selection algorithm takes one partition (fold) at 

a time as the test set and trains on the remaining nine 

partitions. The output of applying the wrapper-based 

attribute selection on each fold is a set of performance 

counters. These counters are the best performance deviation 

predictors recommended by the WRAPPER approach.  

We then select the top k performance counters, which are 

selected most in the 10 folds. These top k counters form the 

performance signature for the corresponding load test. The 

frequency for each performance counter variable is 

calculated based on the number of times it appears in the 

folds divided by the total number of folds. Selecting the top k 

is based on one of the two heuristics: “% Frequency”, i.e., 

the minimum percentage of times that the performance 

counter is selected in the 10 folds, or “Count”, i.e., the exact 

number of counters desired. TABLE IV shows the results of 

our supervised signature generation for the same example of 

performance counter data used in section II.C.  In TABLE 

IV, we show two signatures which are generated by: a) 

specifying Count=5, which results in a signature consisting 

of performance counters 1, 2, 5, 7 and 8, and b) specifying 

frequency as %Frequency>20, which results in the 

performance counters that appear in at least three folds, out 

of 10 folds, i.e. performance counters 1, 2, 5, 6, 7 and 8. We 

choose %Frequency>20 to be consistent with the 80% of top 

k performance counter selection by setting weight parameter 

to 0.2 in the PCA approach.  

Deviation Detection: In this phase, the observations for 

the performance counters of the signature are extracted from 

the baseline load test.  Then the extracted data is given to a 

logistic regression [13], as a training set, to build a 

classification model for performance anomaly detection. 

Finally, the signature‟s observations from the new load test 

are classified into passed or failed using the regression 

model. The logistic regression is chosen as a basic and state 

of practice technique in the classification and prediction 

literature in software engineering [13] and can be switched 

with any other classification technique that shows better 

results in future experimentations. 

III. CASE STUDY 

The main goal of this case study is to investigate and 

compare the effectiveness of our approaches for analyzing 

the load test result of large scale systems. So we shape our 

goal as this research question: 

RQ. How effective are our signature-based approaches in 

detecting performance deviations in load tests? 

Motivation: An approach with low recall won‟t be 

adopted in practice since it fails to detect many of existing 

deviations. An approach that produces results with high 

recall and low precision is not useful either since it floods the 

performance analysts with too many false positives. An ideal 

approach should predict a minimal and correct set of 

performance deviations. We evaluate the performance of our 

approaches using precision, recall and F-measure. 

A. Subjects of Study and Environment Setup 

TABLE V lists the systems studied in this paper. In this 

section, we describe the environment setup for these systems. 

The Industrial System: We used a subsystem of an ultra 

large industrial software system in the domain of telecom 

that supports millions of concurrent users.  

TABLE V.  THE SUBJECTS OF THE STUDY 

No System Domain Type of Data 

1 
Industrial 

System 
Telecom 

Production data 

Data from our experiments on 

the company‟s testing platform  

2 Open Source 
E-

commerce 

Data from our experiments 

with an open source 

benchmark application  



TABLE VI.  FAULTS INJECTED IN OUR LOAD TEST EXPERIMENTS 

Category Failure Trigger Faults Exp. Id 

Software 

Failures 

Resource 

Exhaustion 

1. CPU Stress 1 

2. Memory Stress 2 

System Overload 3. Abnormal Workload 3 

Operator 

Errors 

Configuration 

Errors 

4. Misconfigured Load 

Generator 
4 

Procedural Errors 

5. Interfering Workload 5 

6. Unscheduled 

Replication 
6 

TABLE VII.  LOAD TEST CONFIGURATION FOR DELL DVD STORE (DS2) 

Parameter Value 

Testing duration 1 hour 

Number of driver (load generator) threads 50 

Startup request rate (load ramp-up rate) 5 

Think time (time to complete an order) 30 sec 

Database size 100MB 

Percentage of new customers 15% 

Average number of searches per order 3 

Average number of items returned in each search 5 

Average number of items per order 5 

We obtained two sets of load test counter data for their 

subsystems. 

a) Production data: obtained from the performance 

repository of the industrial system under study. The load 

testing is performed by the company experts.   

b) Testbed data: obtained during a load test conducted by 

us using the company‟s testbed. 

The Open Source System: The second system under 

study is Dell DVD Store (DS2) application, which is an open 

source prototype of an online e-commerce website. It is 

designed for benchmarking Dell hardware. It includes basic 

e-commerce functionalities such as user registrations, user 

login, product search and purchase. DS2 consists of a back-

end database component, a web application component, and 

a driver program (load generator). DS2 has multiple 

distributions to support different languages such as PHP, 

JSP, and ASP and databases such as MySQL, Microsoft SQL 

server, and Oracle. In this case study, we use the JSP 

distribution and a MySQL database(s). The JSP code runs in 

a Tomcat container. Our load consists of a mix of 

transactions, including user registration, product search and 

purchases. The configuration of our DS2 load generator for 

the baseline load test in our experiments is listed in Table 

VII, to enable the replication of our experiments. 

B. Fault Injection 

To study our approaches on realistic situations, we must 

evaluate them in the presence of representative faults. To do 

so, we first need to choose the category of faults, e.g. 

software failures, hardware failures and operator/human 

errors. Secondly we need to decide on the failure triggers for 

each category, e.g. software failures could be triggered by 

resource exhaustion, logical errors or system overload. Pretet 

[14] performed a detailed study on failure occurrences in an 

enterprise web service system and concluded that 80% of the 

failures are due to software failures and human errors. 

Therefore, in this paper, we use these categories for our 

experiments. Pretet have also listed the seven most common 

triggers for software failures and human error failures. 

Among them, we used four failure triggers that fit into our 

load test experiments, which are listed in Table VI.  Below, 

we explain why we choose the failure triggers listed in Table 

VI and their relation to load testing.  

Resource Exhaustion: Large enterprises report resource 

exhaustion as one of the fundamental field problems [15]. 

Researchers, also, have identified that post deployment 

problems are rarely due to functionality errors, rather, they 

are often due to resource saturation problems causing 

applications not to respond fast enough, crash, or hang under 

a heavy load. 

System Overload: Performance analysts often have to run 

numerous tests for every release or build of an application 

for specific workloads under particular hardware and 

software conditions [3]. They have to carefully analyze the 

test to ensure that the system is not overloaded and is 

meeting its desired SLA, e.g., response time or latency. 

Configuration Errors: One of the most common reasons 

of load test failures is the misconfiguration of an application 

under test or its execution environment. For example, 

databases, web servers or load generators may be 

misconfigured due to time pressure or complex 

configuration. 

Procedural Errors: Procedural errors are the second 

major source of failures in the operator error category [14]. 

Load test procedural errors happen when the analyst/tester 

does not follow guidelines and processes for conducting a 

load test. For example, the tester forgets to restart a web 

service or to initialize database tables before the start of a 

load test. Similarly one of the most common causes of 

triggering procedural errors in large scale systems is when a 

tester forgets to suppress/change the schedule of background 

interfering loads, e.g. the start of the antivirus or a database 

replication during the course of a load test [16].  

C. Experiment Design 

We designed seven experiments to answer our research 

questions. We used the framework of Thakkar [15] to 

automate the load tests and to ensure that the environment 

remains constant throughout the experiments. We used 

Thakkar framework due to its simplicity and previous 

success in practical performance testing [15].   

Except for experiment 7, which consists of production 

data obtained from the industrial partner, all other load test 

experiments are repeated 10 times to ensure the consistency 

among our findings. The ramp-up and ramp-down (warm up 

and cool down) periods were excluded from the load test 

analysis, as the system usually is not stable at these periods. 

We used windows tool to collect the performance data 

periodically after every 10 seconds (sampling interval). This 

means that each industrial experiment conducted on the 

testbed has 2,880 observations as these tests lasted for 8 

hours. However, all the experiments conducted on the DS2 

benchmark application are one-hour tests and contain 360 



observations per performance counter. We now detail the 

settings of each experiment for the faults listed in TABLE 

VI. 

Experiment 1 (CPU Stress): Experiment 1 investigates 

the software failure category by triggering resource 

exhaustion. For experiment 1, we ran a load test with a 

baseline workload. Then we slowed down the CPU of the 

web server using a CPU stress tool, known as winThrottle 

[17]. We choose winThrottle over other CPU stress tools 

because it is an open source tool and can use features in 

system hardware that directly modify the CPU clock speed, 

rather than using software “delay loops” or “HLT 

instructions” to slow down the machine.  

Experiment 2 (Memory Stress): For experiment 2, we 

conducted a load test with the same workload as the baseline 

load test, but injected a memory bug into the webserver using 

a customized open-source memory stress tool called EatMem 

[18]. The tool allocates a random amount of available 

memory at recurring intervals to mimic a memory leak. 

Experiment 3 (Abnormal Workload): This experiment is 

conducted using the DS2 system. We trigger a system 

overload, the second common failure trigger identified by 

Pretet [14]. This experiment keeps the workload-mix 

constant and increases the execution rate of our workload to 

4X, i.e. four times as the baseline configuration.  

Experiment 4 (Misconfigured Load Generator): This 

experiment uses the testing platform to mimic the problems 

resulting from misconfiguration of the load generator. 

Therefore, we configure the load generator to push a 

different workload-mix than the baseline workload. 

Experiment 5 (Interfering Workload): This experiment 

aims to trigger a procedural error for a load test.  We created 

an interfering background workload fault, where the tester 

forgets to reschedule an antivirus scan that conflicts with the 

timing of the load test. We scanned one of the web server 

machines with an antivirus every 10 minutes for 3 minutes 

over the course of one hour to perturb the main workload.   

Experiment 6 (Unscheduled Replication): This 

experiment also aims to trigger a procedural error for a load 

test. We mimic the scenario where the tester forgets to 

reschedule the database replication over the course of a load 

test. We set the replication time to coincide with the start and 

stop time of the load test.  

Experiment 7 (Production Data): This experiment was 

conducted on the production data. Performance analysts gave 

us two sets of performance counter data: a baseline and a 

deviated load test, without revealing the type of faults. 

D. Measuring the Effectiveness of Our Proposed 

Approaches 

To evaluate the effectiveness of our approaches, we use 

the following measures: Precision, Recall and F-Measure. 

Precision is the ratio between correctly detected performance 

deviations and predicted performance deviations between the 

two load tests. Recall is defined as the ratio between the 

number of correctly detected performance deviations and the 

number of actual performance deviations for a load test.  F- 

 
Fig. 3.  Illustration of our effectiveness measures  

measure is defined as a harmonic means of precision and 

recall. F-Measure = (                         
                  . The value of alpha ( ) ranges between 

0 and infinity to give varying weights for recall and 

precision. For example, in this paper, to indicate that recall is 

as important as precision, alpha has a value of 1.0. These 

definitions are directly applied to the output of the control 

chart (random and clustering- approaches) and logistic- 

regression (WRAPPER approach), where the classifications 

are done per observation (i.e., for each observation, one can 

define whether the prediction is true or false positive). 

However, the PCA approach cannot predict performance 

deviations for one single observation. Since as noted earlier, 

PCA requires a certain minimum number of observations to 

construct a performance signature [16].  

Therefore, throughout our load test analysis with the 

PCA approach, we divide the load test into time intervals. 

Fig. 3 shows a performance counter data of two load tests. 

The performance counter data for each load test is divided 

into equal time intervals from t1 to t10.  For load test-2, a 

failure is injected during time intervals t3, t4 and t5.We use 

Fig. 3 as an example to explain how we can measure the 

precision and recall of the PCA approach. An ideal approach 

should only report the intervals at which the deviations 

occurred O={t3, t4, t5}. Assume we take Test-1 as a baseline 

and apply the PCA deviation detection approach on Test-2 

and detect performance deviations between two tests at time 

intervals P={t1, t2, t3, t4}. Based on these definitions we 

define:  Recall = |P∩O|/|O| and Precision = |P∩O|/|P|. 

Therefore, in the above example, Recall=2/3=0.67, 

Precision=2/4=0.5, and F-Measure=0.57.  

E. Case Study Results 

We report our findings regarding our research question: 

RQ1.  How effective are our signature-based approaches in 

detecting the performance deviations in load tests? 

The results of the four approaches (Random:R, 

Clustering:C, PCA:P, and WRAPPER:W) for all seven 

experiments are reported in TABLE VIII in terms of 

precision, recall and F-measure (for the first six experiments 

the values are the average of the 10 runs per experiment). 

The “Total Counter” column in TABLE VIII shows the total 

number of performance counters collected for the 

corresponding experiment. The “Sig. Size” column represents 

the number of performance counters in the signature for each 

approach.  The choice of Sig. Size is based on two factors. 

The main constraint on the size comes from practicality. As  



TABLE VIII.  THE EFFECTIVENESS OF SUPERVISED AND UNSUPERVISED DEVIATION DETECTION APPROACHES FOR LOAD TESTING WITH SMALL FINGERPRINT 

Exp. 
Precision Recall F- Measure Sig. Size Total Counter 

W P R C W P R C W P R C   

1 0.99 0.88 0.2 0.69 1 0.8 0.77 0.79 0.99 0.84 0.32 0.74 20 220 

2 0.88 0.81 0.2 0.7 0.87 0.9 0.69 0.8 0.87 0.85 0.31 0.75 20 220 

3 0.94 0.66 0.27 0.69 0.91 0.8 0.79 0.75 0.92 0.72 0.40 0.72 20 220 

4 0.98 0.5 0.22 0.32 0.92 0.8 0.74 0.75 0.95 0.62 0.34 0.45 5 18 

5 0.95 1 0.29 0.7 0.92 0.8 0.76 0.82 0.93 0.89 0.42 0.76 15 110 

6 0.92 0.9 0.18 0.7 0.95 0.9 0.69 0.82 0.93 0.90 0.29 0.76 20 110 

7 1 0.9 0.2 0.79 1 0.9 0.72 0.8 1 0.90 0.31 0.79 9 92 

Avg. 0.95 0.81 0.22 0.65 0.94 0.84 0.73 0.79 0.94 0.82 0.34 0.71 16 141 

  
Fig. 4.  Effectiveness of supervised (WRAPPER) and unsupervised (PCA) 

approaches over signature size for representative examples 

discussed, performance analysts of our industrial partner 

advised us that they consider 20 performance counters as a 

maximum manageable size in the analysis of load tests. Any 

increase in the number of performance counters beyond 20 

negatively affects the human capability to effectively 

conduct root-cause analysis in limited time. Based on their 

input, we limited the signature size to maximum of 20 

performance counters. The other factor that affects the size 

of signatures is the method that our PCA approach uses for 

signature generation, the“% Cumulative Variability”.  As 

discussed in II.C, we set the PCA threshold for selecting 

counters from PCs as 0.2 to extract 80% of cumulative 

variation in the counters. 

We apply the same threshold for the WRAPPER 

signature generation to get the counters represented in the 

80% of the folds. Finally, we set the common signature size 

for all approaches per experiment as the minimum of <20, 

the PCA‟s signature size using 0.2 threshold, the Wrapper‟s 

signature size using 80% threshold>. TABLE VIII shows 

that “Sig. Size” ranges from 5-20 in the seven experiments. 

Regardless of the signature size per experiment, we want to 

evaluate the effectiveness of our approaches on deviation 

detection. The results show, as expected, Random deviation 

detection has the lowest effectiveness (precision, recall, and 

the F-measure). Among the clustering and PCA approaches, 

the PCA approach almost always performs significantly 

better.  Comparing the supervised approach (WRAPPER) 

and the best unsupervised approach (PCA) we can see that 

the supervised approach dominates the unsupervised 

approach in terms of precision, recall, and the F-measure. 

The next observation from the results is the excellent balance 

of high precision and recall of both the WRAPPER and PCA 

approaches (on average 0.95, 0.94 and 0.81, 0.84 

respectively). However, the supervised approach (WRAPP- 

ER) is still more effective than the best unsupervised 

approach (PCA). 

IV. DISCUSSION 

We now discuss the practical differences between our 

best unsupervised (PCA) and supervised (WRAPPER) 

approaches. 

A. Manual Overhead 

The WRAPPER approach outperforms the PCA 

approach in terms of precision/recall. However, WRAPPER 

requires all observations of the baseline performance counter 

data to be labeled as passed/failed. Such labeling is required 

for the training of this supervised approach. In practice, 

however, this is an overhead for analysts that rarely have 

time to manually mark each observation of the performance 

counter data. Therefore, tool support is needed to help 

analysts partially automate the labeling, whereas, the PCA 

approach does not require any such human intervention. 

B. Real Time Analysis 

We refer “real-time analysis” as the ability of an 

approach to process the performance counter data as it 

arrives, in order to detect performance deviations. The 

WRAPPER approach is more real-time than the PCA 

approach. The WRAPPER approach detects the load test 

performance deviations on a per-observation basis. Whereas, 

the PCA approach requires a certain amount of observations 

(wait time) before it can detect any performance deviations 

for a load test [10]. 

C. Stability 

We refer to “stability” as the ability of an approach to 

remain effective while its signature size is reduced. We find 

that the WRAPPER approach is more stable than the PCA 

approach. This means that a slight increase/decrease of its 

signature size smoothly increase/decrease the effectiveness 

of the approach. To investigate the stability of the 

approaches, we plotted (only for Exp-1 and Exp-2 for the 

sake of space limitations) the F-measure over signature size, 

from size 1 to the size selected by each approach, covering 

80% of the variation (0.2 for the PCA variation threshold and 

80% for the WRAPPER frequency threshold). As shown in 

Fig. 4, the WRAPPER approach exhibits a very smooth 

decrease (stable), when reducing the signature size, for most 

of the experiments. However, the PCA approach has 
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drastically sharp drops in effectiveness as the signature size 

is reduced. In addition, unlike the WRAPPER approach, in 

many cases (circles in Fig.4), decreasing the signature size(s) 

results in an increase of its effectiveness, followed by a 

sudden drop (unpredictable trend). Instability of the PCA 

approach with respect to reducing the signature size affects 

its practicality. As a first step to explore the stability 

differences between the proposed approaches, we looked into 

the selected performance counters of the signatures provided 

by the WRAPPER and PCA approaches. We compared the 

signatures of the WRAPPER and PCA approaches for all 

seven experiments (with signature sizes generated by the 0.2 

and 80% thresholds for the PCA and WRAPPER approaches 

respectively). On average (for our seven experiments), the 

performance signatures of both approaches share 80% 

common performance counters. On a closer look, we found 

that 20% of the performance counters were different because 

each approach picked up the important performance counters 

at different granularities within the same category. We 

illustrate what granularity and category means by a real 

example from the case study. In experiment 1, where we 

stressed the CPU of the database servers, the WRAPPER 

approach picked one of the performance counters that 

exactly captures the processor time for the MySQL server of 

the database machine. Whereas, the PCA approach picked up 

a performance counter at a coarser granularity, i.e., the total 

processor time for the database machine. Both of these 

performance counters are essentially measuring the same 

category, i.e. CPU, but at different granularity. Therefore, the 

difference between the granularities of the performance 

counters in the two signatures might be a possible reason for 

the differences in their effectiveness.  

In addition, we found that the order of the 80% common 

performance counters is different in the PCA and 

WRAPPER signatures. In the PCA signature, the 

performance counters are ranked based on their weights in 

the PCs. Whereas, the WRAPPER approach ranks the 

performance counters based on which performance counters 

are selected the most in the 10 folds during the prediction 

step. Since the regression technique used by our WRAPPER 

approach is sensitive to the ordering of the variables, this 

difference in the ordering might be another possible cause for 

the differences between the effectiveness of these two 

approaches, which again requires further studies.  

V. LIMITATIONS AND THREATS TO THE VALIDITY 

Hardwar Differences: In practice, large scale systems 

have many testing labs (testbeds) to run multiple load tests 

simultaneously to speed up the testing. Labs may have 

different hardware. Therefore, if the baseline load test was 

conducted in one lab, and another similar load test, without 

any performance deviation, is conducted at different lab, our 

approaches may interpret them as deviated from each other. 

Recent work by Foo [5] proposes several techniques to 

overcome this problem. 

Sensitivity: We can tune the sensitivity of our approaches 

to uncover small fluctuations. For example, in the 

WRAPPER approach, the labeling phase by the analyst 

decides how big the deviation should be to be flagged. In the 

PCA approach, the threshold that decides whether two 

performance counter weights in the signatures are the same 

or not is the tuner. Finally, in the control chart, the LCL and 

UCL values define the deviations. Though lowering 

sensitivity reduces false alarms, it may overlook some 

important outliers. However, this is a general problem and an 

automated technique, generally, cannot decide whether a 

given outlier is a noise or an important deviation, only based 

on performance counter data.  

Construct Validity: Since our approaches are evaluated, 

in six out of seven experiments, based on injected faults, we 

tried to reduce the construct validity threat by being 

systematic with the fault injection process. Despite our 

careful fault injection mechanism, the types of the injected 

faults may not be fully representative of real faults.   

Internal Validity: This study required various sets of 

configurations (test environment settings), implementations 

(supervised and unsupervised signature generations), and 

data analysis (data handling and statistical analysis). 

Therefore, to reduce the internal validity threat we used 

existing frameworks (e.g., Thakkar framework for 

automating the load test executions), tools (e.g., Weka for 

implementing the WRAPPER approach) and packages (e.g., 

R statistics packages for PCA implementation study).  

Conclusion Validity: Experiments 1-6 are executed 10 

times each and the average of the results is taken for 

comparison among different approaches. However, the 

differences among the approaches might be by chance due to 

random nature of the experiments. We plan to extend the 

study with more runs per experiment so that statistical 

significant test can be meaningfully applicable.  

External Validity: We used one large industrial and one 

open source benchmark application to reduce the threat. But, 

our approaches cannot be generalized to any other systems 

especially in other domains without its replication. 

VI. RELATED WORK 

How to automate performance monitoring and analysis of 

an enterprise system is not a new problem. However, there is 

little work done in pre-diagnosis (load, stress and 

performance regression testing) of performance problems in 

large scale systems. Most of the work in the literature is post-

deployment centric, focusing on automatic field problem 

diagnosis and monitoring techniques. Our work is pre-

deployment centric and aims to uncover performance 

problems in a load test.  

The closest work to us, i.e., load test analysis, is the work 

done by Jiang [3] and Foo. [5] to automate the analysis of 

load test results. Unlike our work, Jiang relies on execution 

logs [3]. The execution logs capture detailed information. 

However, such logs are vendor and application specific. This 

means, that different subsystems in a large scale system (e.g. 

web servers, databases, and mail servers) produce a variety 

of execution logs, each with different levels of information 

and formats. Whereas, the performance counters data, 



provide a greater level of unification across subsystems and 

systems. Similar to our work, Foo et al. used performance 

counters to find deviations between load tests [5]. Their 

approach requires discretization of performance metrics into 

levels (e.g. high/medium/low). Such level-based 

discretization of metrics fails to capture fine-grained 

performance deviations in a load test.  

There exists some work, though not directly targeted at 

load test analysis that can be potentially used in the testing 

domain to assist practitioners in load test analysis. Among 

them, the work that inspired our PCA approach is the work 

by Sandeep et al. [16]. They used principal feature analysis 

(PFA) to achieve data reduction and random forests to 

characterize workloads. The main difference between their 

PFA approach and our PCA approach is that, their work is 

partially automated and requires continuous training to 

produce accurate results. With the same objective, Huck and 

Malony [8] proposed a performance data mining framework 

for large-scale parallel computing. The framework tries to 

manage data complexity by using techniques such as 

clustering and dimensionality reduction. This data mining 

framework uses random linear projections and PCA to 

reduce performance data. Unlike our PCA approach, the 

framework does not transform the PCs back to individual 

performance counters making it harder for performance 

analysts to act on its findings. In our previous work [6], we 

introduced our unsupervised approach based on PCA. In this 

paper, we extended that work by exploring new deviation 

detection approaches (more basic unsupervised approaches 

as baselines and a supervised approach for comparison) and 

empirically compared them with our PCA approach. We also 

conducted a more extensive case study and carefully studied 

the results with respect to signatures size and practicality. 

VII. CONCLUSION AND FUTURE WORK 

Manually analyzing the load testing results for large scale 

systems is error-prone and inefficient due to the large volume 

of performance data and time pressure. Furthermore, limited 

knowledge of an analyst about such large systems under test 

may increase the difficulty of the analysis. In this paper, we 

proposed one supervised and three unsupervised approaches 

to automate the analysis of load test in large scale systems. 

Our approaches select a subset (called signature) of 

performance counters for a load test. The signature acts as a 

unique fingerprint for the load test and compares it with 

signatures from baseline load tests. A large case study on a 

real world industrial software system as well as a benchmark 

open source system provides empirical evidence of the 

ability of our approaches to uncover the performance 

deviation in load tests. As future work, we plan to do a larger 

study where we look at different combinations of possible 

approaches for signature generation (dimension reduction) 

and deviation detection to understand the importance of each 

step and maximize the effectiveness of the overall approach.  
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