
Visualizing the Results of Field Testing

Brian Chan, Ying Zou
Dept. of Elec. and Comp. Engineering

Queen’s University
Kingston, Ontario, Canada

{2byc, ying.zou}@queensu.ca

Ahmed E. Hassan
School of Computing
Queen’s University

Kingston, Ontario, Canada
ahmed@cs.queensu.ca

Anand Sinha
Handheld Software

Research in Motion (RIM)
Waterloo, Ontario, Canada

asinha@rim.com

Abstract— Field testing of software is necessary to find
potential user problems before market deployment. The large
number of users involved in field testing along with the variety
of problems reported by them increases the complexity of
managing the field testing process. However, most field testing
processes are monitored using ad-hoc techniques and simple
metrics (e.g., the number of reported problems). Deeper
analysis and tracking of field testing results is needed. This
paper introduces visualization techniques which provide a
global view of the field testing results. The techniques focus on
the relation between users and their reported problems. The
visualizations help identify general patterns to locate the
problems. For example, the technique identifies groups of users
with similar problem profiles. Such knowledge helps reduce
the number of needed users since we can pick representative
users. We demonstrate our proposed techniques using the field
testing results for four releases of a large scale enterprise
application used by millions of users worldwide.

Keywords- User Logs; Visualization; Pattern Identification;
Automation

I. INTRODUCTION
Software must endure rigorous field testing before

market deployment. Field testing helps uncover problems
due to unexpected user behaviors and unforeseen usage
patterns in a natural setting. Instrumented versions of the
application are used during field testing. These versions
enable the collection of field data in real-time without
developer interference. A problem report is sent and stored
in a central repository when an unexpected situation occurs.
Common information in the report includes error messages
and call stacks for a problem. The report also records the
user who had the problem.

Developers must analyze and resolve these reported
problems. Problems reported by a larger number of users are
a high priority for developers to resolve. To verify the repair
of a problem or to understand its peculiarity, developers must
often replicate the scenarios which trigger the problem. By
understanding the characteristics of the users reporting a
problem and its peculiarities, developers should be able to
gain insight into ways of resolving it.

 In the current state of practice, developers often examine
problems individually without a global view on the relation
between the different problems and the relation between the
users reporting these problems. For instance, it may be the
case that:

1. A particular set of problems co-occur frequently
together in the same time in a problem report therefore
studying and resolving any one of these problems might
lead to the resolution of all these problems. With some
problems easier to replicate than others, such
information is likely to lead to faster resolution of these
problems. We developed a problem graph to highlight
such information.

2. Several users often report the same set of problems (i.e.,
share the same problem profile); therefore recruiting a
few of these users to verify any fix is often a faster
option instead of deploying the fix across the field
blindly and awaiting problem reports. We developed a
user graph to identify users reporting common
problems.

3. We can cross reference the problems reported and
recruit users to replicate them. A large number of
problems are reported; however very few of these
problems have a wide impact on many users. Fixing
problems with high impact is usually a high priority
effort. We developed an interaction graph to give a
global view of the relation between the participants of
field testing (i.e., users) and the outcome of the testing
(i.e., problems).

Using our visualization, developers can automatically

analyze the large amount of data reported during field
testing. Our visualization identifies patterns that demonstrate
the user and problem interactions. The patterns allow
developers to tackle problems with a global view instead of
individually. In particular, such patterns help developers
categorize, prioritize, and replicate problems, allowing
developers to observe new relationships that are often
overlooked in practice. By visualizing the field testing results
across multiple product releases, developers can compare the
progress of field testing efforts for different releases.

Organization of the Paper. The rest of the paper is
organized as follows. Section 2 presents our three
visualizations: problem graph, user graph and interaction
graph. Section 3 presents a case study which demonstrates
the use of our visualization to study the field testing results
of a large enterprise application. Through our study we note
several patterns in the visualization. We developed an
automated approach to identify such patterns. We discuss
these patterns and report on the accuracy of our automated

approach. Section 4 discusses related work. Finally, Section
5 draws conclusions and discusses future work.

II. OUR THREE GRAPHS FOR FIELD DATA
In this section, we introduce the three types of graphs that

are produced from the field data. Our graphs could have as a
node: a problem report, a user, or both. The edges in our
graphs are based on different types of relations between the
nodes. For example, an edge between two nodes in a
problem graph indicates that the two nodes (i.e., problems)
co-occur frequently together in a report. While an edge
between two nodes in a user graph indicates that the two
nodes (i.e., user) frequently report the same types of
problems. Due to the large number of reported problems and
users in field testing, we cannot simply show all the edges
and nodes. Instead we must filter them. In the following
subsections, we present our three graphs in more detail. We
discuss the filtering process after the presentation of the three
graph types.

A. Problem Graph: Visualizing the Interaction among
Problems
Developers often tackle field problems on an individual

basis – overlooking the possibility that certain problems may
be interconnected. For instance, one problem reports that the
disk is full, while another problem reports that the
application fails to write to disk. Both problems can occur
independently for different users or together for the same
user who attempts to write to a full disk and triggers both
problems. If the write-failure problem reports were sparse,
developers might have a hard time to capture and fix the
write-failure problem. However if developers can determine
that this rare write-failure problem co-occurs frequently with
a disk-full problem, developers can use the disk-full problem
to better understand the write-failure problem and resolve it
in a timely fashion. This situation occurs often in large
complex applications, given the different coding and
reporting standards followed by various groups. By flagging
relations between problems, we can overcome the fact that
some reports might be sparse or that some reports are harder
to reproduce or investigate.

In a more complex situation, each occurrence of an error
may trigger a different, yet often limited, number of
problems. Such an error is often due to the use of an
uninitialized field or timing/race conditions. When a user
encounters the error several times, various problems
associated with the same error can be reported by the same
user in different occasions. Identifying the problems reported
by the same user helps developers capture the common cause
for the problems, and fix all the problems at once.

Finally, another type of problem co-occurrence happens
when a single error leads to a cascade of related problems.
For example, a problem, caused by an error in the code that
reads data from the network, would often lead to multiple
problems triggered in the subsequent execution of the
application (due to the network-read errors). In an ideal
situation, such problems would have been reported as the
same type of problem. However, all too often the errors
might manifest themselves as different problems. For

example, an error to read from a network might manifest
itself as the handling of a NullPointer problem, and the
subsequent problems are reported as out of bound
processing. The aforementioned situations highlight the
importance of studying field problems together instead of
individually. By interlinking problems, developers might
discover unexpected yet important relations between
problems during the field testing process. The problem graph
establishes such interlinking among problems.

Figure 1. An Example of a Problem Graph

The problem graph is an undirected graph, GProblem =
(VP, EP). The set of nodes, VP, of the graph contains a set of
problems (i.e., P) reported in the repository. We consider
problem reports to be the same if they have the same call
stack recorded when the problems are triggered. The set of
edges, EP, contains undirected edges, eab={Pa, Pb} if
problem Pa and problem Pb are reported together by one or
more user. Each user reports both problems (i.e., Pa and Pb).
If a large number of users report the two problems together,
then we believe that such a relation needs to be highlighted
to developers for further investigation. The graph is
designed so that only nodes with a direct edge have a
relationship. For example, the interconnected nodes P1, P5
and P6 indicate that all three problems have been reported
although not necessarily all together. Moreover, there could
have been three different users reporting each pair of
problems (i.e., {P1, P5}, {P5, P6} and {P1, P6}) or one user
reporting the three problems together (i.e., {P1, P5 , P6}}. A
problem node appears in the problem graph only if it is
reported together with at least one other problem node by a
user.

We add weights to the nodes and edges. The weight of a
node indicates the frequency of unique occurrences of that
problem among users in the field testing repository.
Visually, nodes are shown as circles with the weight of a
node depicted as the size of the circle. Looking at Figure 1,
P1 is reported by more users than P3. We define the weight
of edges using statistical filtering techniques. We discuss it
in Section II.D. Table I summarizes the definition of nodes
and edges for the Problem Graph.

B. User Graph: Visualizing the Interaction among Users
Given the complexity of modern enterprise applications,

the usage patterns between users tend to vary considerably
with users forming clusters based on their usage of the

application. For example, given an application for order
taking and fulfillment, we would expect that at least two
user clusters would arise along the two main uses of the
application (i.e., order taking and fulfillment) with many
sub-clusters forming based on the peculiarities of use within
the two large clusters. Different clusters might also arise
from commonalities across the user population. Similar
characteristics such as similar hardware configuration or
usage patterns (e.g., living in areas with bad wireless
coverage or slow internet connections) are likely to lead
users to report similar problems.

Flagging users with common problem profiles is of great
value to developers. Using this knowledge about user
clusters, developers could replicate specific problems and
verify their fixes in an easier fashion. For instance, if most
users in the order-taking department have the same problem
profile, then a developer might be able to recruit a particular
user to deploy additional monitoring on their installation.
Developers can work closely with that user to solve a
problem that affects the whole cluster of users in the order-
taking department. Furthermore, using this knowledge about
user clusters, managers can optimize their planning of future
field testing efforts by picking at least one representative
user from each cluster to participate in the field testing for a
particular software version. Given the limited number of
users that are willing to participate in field testing efforts
and the large number of releases that are usually tested in
parallel, a field-testing manager can distribute their user
base more strategically. For example, if there are three
versions of the software under testing and prior field testing
shows the existence of two distinct user clusters, then the
manager should ensure the participation of one user from
each cluster to the three tests instead of randomly picking
users.

Figure 2. An Example of a User Graph

We developed the user graph to help identify such

clusters. The user graph is an undirected graph, i.e., GUser =
(VU, EU). The set of nodes, VU, of the user graph contains a
set of users (i.e., U) who report problems sent to the
repository. The set of edges, EU, contains an undirected edge
eab={ua, ub} if users, ua and ub, have reported at least one
common problem.

The weight of a user node represents the number of
unique problems that a user reports with other users. For

example a user that reports the same problem with four
other users has a greater weight than a user who reports two
common problems with one other user. Visually, nodes are
shown as squares with the weight of a node depicted as the
size of the square. Looking at Figure 2, User1 reports more
problems in common with other users than User3. We define
the weight of edges using statistical filtering techniques. We
discuss it in Section II.D. Table I summarizes the definition
of nodes and edges for the User Graph.

C. Interaction Graph: Visualizing the Relations between
Problems and Users
The interaction graph gives a global view of the results

of field testing process. The graph cross references the
relationship between problems and users. The interaction
graph helps analyze the visualization produced by the other
two graph types. For example, while the problems are not
identified within the user graph, the interaction graph could
be used to cross-reference the specific problems after
locating a particular user base in the graph.

The interaction graph is an undirected, weighted graph,
GInter =(VI, EI). The set of nodes, VI, is the union of the user
set (i.e., U) and the problem set (i.e., P). Figure 3 illustrates
an example of the interaction graph. The circular nodes
represent problems and the square nodes represent users.
The set of edges, EI, contains an undirected edge, eab={Pa,
Userb}, if Userb reports a problem, Pa. For the example
shown in Figure 3, User3 and User7 both report problems P2
and P3. P1 is reported by User1, User2 and User3.

Figure 3. An Example of an Interaction Graph

The weight of a user node captures the number of unique
problems reported by the user. Visually, the weight of a user
node is shown as the size of the square node. The weight of
a problem node reflects the frequency of the problem
occurred during the field testing. Visually, the problems are
depicted as circles with the weight of a node illustrated as
the size of the circle. As depicted in Figure 3, User8 reports
more problems than User1. Problem P2 occurs more
frequently than problem P1. We define the weight of edges
using statistical filtering techniques. We discuss it in
Section II.D. Table I summarizes the definition of nodes and
edges for the Interaction Graph.

D. Statistical Filtering and Weighting
Showing all the users and problems that exist in a field

testing repository would lead to very complex graph with

TABLE I. SUMMARY OF THE THREE TYPES OF GRAPHS

Graph Entity Entity type Weight Filtering

Problem
Graph

Node Problem The number of different users who report the
problem at least once in the repository

Must co-occur with at least one
other problem after edge filtering

Edge Both problems co-occur Statistical weight (see section II.D) Statistical filtering (see section II.D)

User
Graph

Node User The number of unique problems that a user
has in common with other users

Must report a single problem after
edge filtering.

Edge Both users report the
same problems

Statistical weight (see section II.D) Statistical filtering
(see section II.D)

Interaction
Graph

Node Problem, User Problem: The number of times a problem is
reported by any user
User: The number of unique problems
reported by a user

Same as above for problem and user
nodes

Edge User reports the Problem Statistical weight (see section II.D) Statistical filtering
(see section II.D)

high over plotting. Therefore we chose to filter the edges
and nodes in the created graph. Traditionally such filtering
is performed by showing edges which are above a particular
threshold. For example, we could show edges between
nodes which exhibit a co-occurrence relation 70% of the
time or based on basic counts (e.g. 70 times). Instead we
choose to perform statistical filtering given the large size of
the data.

The goal of our statistical filtering is to only show
edges that do not simply occur due to chance, instead we
want to show edges that indicate statistically significant
relations (i.e., association). We perform a chi-square (χ2)
test on each edge and filter edges in all graphs based on the
results of the test [9]. Table II shows the 2x2 contingency
table used to calculate the chi-square value. The same
approach is used for all three graphs. For example, in the
problem graph, the cell (Pa, Pb) counts the frequency (i.e.,
f1) where problems Pa and Pb appear together for any users.
The cell (Pa, ¬Pb) counts the number of times (i.e., f2) that
problem Pa occurred but not problem Pb for a user. The cell
(¬Pa, Pb) counts the number of times (i.e., f3) that problem
Pb occurs but not problem Pa. The cell (¬Pa, ¬Pb) denotes
the total number of times (i.e., f4) that neither problem is
reported. χ2 is calculated using formula (1). Looking at the
chi-square (χ2) statistics distribution tables, we use a chi-
square value of 5.99 to filter edges, indicating that we are
95% confident (i.e., p value<0.05) about the statistical
validity of a shown edge.

Edges are given a statistical weight if it satisfies the
conditions of statistical filtering (i.e., are statistically
significant enough to be shown). The statistical weight of
an edge is calculated using the phi measure [5]. The value of
phi measures the strength of the relationship regardless of
the sample size. It was chosen primarily to normalize the
edge thickness in a given sample so that no edge would
detract from the graph. It is based on the chi-squared test as
shown in formula (1). The value of phi is computed using
formula (2). A value of 0 for phi means that there is no
association between two nodes (e.g., problems) and a value

of 1 indicates a perfect association (i.e. both nodes always
co-occur). Therefore, thick edges for any graph display phi
values close to 1. The phi value is statistically significant
when the χ2 value is greater or equal to 5.99 (i.e., p< 0.05).
We filter the edges if the weight of the edges is not
statistically significant. Thin edges indicate low phi values
meaning that the minimal statistical significance.

TABLE II. 2X2 CONTINGENGY TABLE

 Pb ¬Pb
Pa f1 f2

¬Pa f3 f4

))()()((
)()(

31424321

4321
2

32412

ffffffff
ffffffff

++++
+++−

=χ
 (1)

f1, f2, f3, and f4 are the frequencies of two independent events (e.g.,
problems) that appear for different cases listed in Table IIF.

)(
)(

4321

2

ffff
phi

+++
=

χ

 (2)

x 2 is the chi squared value calculated in formula (1). f1,, f2, f3,
and f4 are the frequencies of the two independent events as
described in Table II.

III. CASE STUDIES
To demonstrate the benefits of using our proposed

graphs, we performed a case study using four test versions of
a large scale enterprise software application used by millions
of users worldwide for communication. The application is
written in the Java programming language. Table III shows
descriptive statistics for each version. The data collected for
this study was gathered over the course of 30 days within a
field test of each version. To ease the comparison of
problems of each version, identical problems appearing in
any of the four versions are assigned the same identifier.

The objective of this case study is to identify if there are
any significant differences or trends among the four versions
of the application. We built a prototype tool that can
automatically analyze the three types of graphs to identify
patterns common in all versions. Due to space constraints,
we only display results for versions A and D. Both versions
have the highest number of users and reported problems. We
also report on the accuracy of our automated pattern
identification approach.

TABLE III. STATISTICS FOR THE FOUR STUDIED FIELD TESTS

Version # of Users # of Reported Problems
A 367 342
B 48 85
C 206 143
D 1,302 883

A. Steps for Identifying Patterns from the Graphs
Our prototype tool automatically generates the three

types of graphs and identifies patterns in the following
steps:

1. For all versions, we use our prototype tool to

automatically analyze each problem report to determine
the user who reported the problem and to determine
similar problems using the reported call stacks. We also
identify similar problems across all the studied versions.

2. We generate the edges between each user and problem.
We apply statistical filtering and weighting of the edges
as described in Section II.D and summarized in Table I.
We filtered nodes which no longer have edges attached
to them.

3. We visualize the graphs using a spring-based layout
algorithm that is built in the GUESS (Graph Exploration
System) [4]. GUESS is a system and language for
visualizing and manipulating graph structures. GUESS
accepts command scripts, which help highlight identified
patterns from the data set. For example, Figures 4a), 6a),
and 7a) are the three types of graphs visualized for
version A after statistical filtering.

4. Our prototype tool automatically identifies the patterns
in the data set. The prototype tool is built using GUESS
commands to look for certain characteristics, such as the
number of edges attached to a node and the thickness of
edges. Such characteristics enable the automatic
detection of instances of the patterns in the graphs. For
example, to find strongly interconnected problems in the
problem graph, the prototype tool isolates problems that
have the thickest edges connecting them compared to
other adjoining problem nodes. Looking at Figure 4,
Figures 4b) and 4c) shows instances of two patterns
from the visualization of version A in Figure 4a).
Similarly instances of patterns in version D are depicted
in Figure 5b) and 5c) based on Figure 5a).

B. Identified Patterns
We automatically identify five patterns common to all

four versions using the three types of graphs. We summarize
the patterns using the following template:
• Symptom: describes the characteristics of the pattern in

the graphs which first caught our attention.
• Examples: show examples from the studied application.
• Significance: explains the benefits of identifying the

pattern.

B.1 Interconnected Problems
Symptom. This pattern is found in the problem graphs.

The pattern is characterized by a thick (i.e., statistically
significant) edge connecting adjacent problem nodes. The
sizes of connected nodes can vary. This indicates that one
problem is reported soon after another problem, suggesting
a chain reaction. More than two problem nodes can be
interconnected with thick edges. This indicates a longer
chain effect among the interconnected problems.

Examples. Figure 4b) shows the identified
interconnected problems pattern for version A. In the graph,
we found that problem pairs {P2, P16} and {P35, P41} are
separate examples of the interconnected problems pattern
with their thick edges between each of the two node pairs.
Similarly, Figure 5b) visualizes the interconnected problems
pattern recognized in version D. For example in Figure 5b),
the interconnected problems pattern is exhibited by the thick
edges, such as {P365, P366} and {P702, P708}. The node size
indicates the frequency of the problem being reported by
different users. If the problems are not frequently reported,
fixing such interconnected problems might not be a high
priority. For example, as illustrated in Figure 5b), the node
sizes of problems P365 and P366 are much bigger than other
problems. Therefore, fixing problems P365 and P366 is a
higher priority than fixing problems P702 and P708 because
P365 and P366 are reported by a larger number of users.

Significance. Examining a particular problem might
prove difficult to replicate or fix. However, that problem
might co-occur frequently with another problem. For
example, due to a chaining effect one problem might always
be followed by another problem meaning one problem
cannot occur without the other occurring first. Problems
that are intertwined in this fashion indicate a series of chain
effects that eventually lead to a final problem. It is desirable
to find these patterns to eliminate the initial problem so it
cannot propagate.

B.2 Near Duplicate Problems
Symptom. This pattern is recognized in the problem

graphs. It is characterized by large problem nodes that have
many smaller problem nodes attached to them. In effect the
large node and its smaller neighboring nodes are essentially
the same problem (i.e., they are nearly duplicates of each
other). However, when users alter their usage slightly, the
two problem reports are recognized as different problems.

Figure 4. Visualization of the Problem Graphs for Version A.

Figure 5. Visualization of the Problem Graphs for Version D.

Examples. Figures 4c) and 5c) show the near duplicate
problem patterns identified from both versions. For
example, looking at Figure 4c), P3, P16, P48 and P406
represent nodes with the duplicate problems. Such problem
nodes have smaller nodes that branch off them. Similarly,
the problem graph of version D, shown in Figure 5c), has
instances of this pattern which centers around the problem
nodes, such as P101, P208 and P366 and P687.

Significance. Often during field testing, a set of
problems are reported infrequently. Through close
investigation, we might determine that the set of problems is
a special case of a frequently-occurring problem (i.e., the
near duplicates of each other). In this case, it is desirable to
assign the investigation of both problems to the same
developer.

B.3 Distinct User Cluster
Symptom. This pattern is found in the user graph. It is

characterized with large clusters of user nodes that are
tightly connected. The clusters are formed by applying the
spring-based layout algorithm which groups the user nodes
with stronger association closer. The statistical filtering and
weighting described in Section II.D ensure that the clusters
are statistically significant and not simply due to chance.
The clusters are visually identified from the user graph.

Examples. Figure 6 shows the user graph for both
versions. We note that each version manifests its own
distinct clusters of user nodes. Version A has a large central
cluster (i.e., cluster 1) with several splinter clusters. It
indicates that the majority of users report the same set of
problems and are indistinguishable by the problems they

Problem Appears Together

Problem Appears Together

a) Filtered Problem Graph Before
Pattern Identification

b) Interconnected Problem Pattern
Extracted

c) Near Duplicate Pattern
Extracted

a) Filtered Problem Graph Before
Pattern Identification

b) Interconnected Problem Pattern
Extracted

c) Near Duplicate Pattern
Extracted

Figure 6. Visualization of the User Graphs for Both Versions.

report. Version D has six more distinctive clusters. It shows
that the problems among users are more distinctive.

Significance. Identifying user clusters based on common
problem profiles helps practitioners in the management of

current field testing efforts and the planning of future
efforts. Developers can work closely with representative
users of clusters to gain a better understanding of their

problems through interviews and additional instrumentation.
Furthermore, the representative users could be used to
replicate problems and verify fixes before they are deployed
more widely during the field testing. The identification of
user clusters could also help managers in planning future
field testing efforts. Managers can ensure that each field test
run has representative users from each cluster to guarantee a
wider and more general testing of an application.

B.4 Distributed Problem Coverage
Symptom. This pattern is uncovered by analyzing the

interaction graph. It is characterized with a problem node
having a large number of adjoining user nodes. To prioritize
the fixing of problems, we identify the problems reported by
a large number of users. If a problem node is attached to a
large number of user nodes, it presents a wide spread
problem. The thicknesses of the edges show the distribution
of the problem occurrence across the users. If we can
identify a very thick edge to a particular user, this indicates
that this problem primarily occurs for that user. If a problem
node is attached to a small number of user nodes, the
problem is not widely spread. Part of the analysis also
involves examining the users who report the problem to
determine if they report a large number of problems.

Examples. Figures 7b) and 8b) show the distributed
problem coverage patterns identified from the interaction
graph for versions A and D respectively. Looking at the
graph for version A depicted in 7b), we note several
instances of this pattern, such as the clusters around the
problems, P16, P406, and P408. For example, problem, P16 and
P408 are reported by almost the same set of users. The
interaction graph of version D illustrated in Figure 8b)

contains many instances of this pattern, such as the clusters
around the problem nodes, P81, P172, P183, P232, P422, P676, and
P678. As a result, these problems are good candidates to fix
first.

Significance. Prioritizing which problems to address
first is often a complex decision involving the criticality of
the problem and its widespread impact on the user base.
Given two problems that occur frequently, it is often
desirable to fix problems that impact a larger number of
users evenly. Counting the number of users that encounter
the problem is a good metric. However, the metric fails to
capture the frequency of the occurrence of the problem. For
example, given a problem which occurs 100 times, it could
be the case that the problem occurs 80 times for a single
user and very infrequently for another 20 users. Or it could
be that the problem occurs evenly across the 21 users. A
visualization that shows this distribution help in the
prioritization of problems. Moreover we must consider each
user that has this problem in the context of the other
problems. Referring back to our previous example of a user
with a problem being reported 80 times, if we notice that
this user is reporting a large number of other problems, it
might be the case that this user’s installation or environment
has issues and that the problem is not as frequently
occurring as we thought.

B.5 Distributed User Coverage
Symptom. This pattern shows up in the interaction

graph with a large user node having many adjoining
problem nodes. This pattern appears visually as a star-like
shape with a center user node and problems radiating out of
that user node.

Reports same problem(s) User ClusterUser

a) User graph for Version A b) User graph for Version B

Figure 7. Visualization of the Interaction Graph for Version A.

Figure 8. Visualization of the Interaction Graph for Version D

Examples. Figures 7c) and 8c) show the distributed user
coverage patterns extracted from both versions. As
illustrated in Figure 7c) for version A, the clusters around
user nodes, User10, User258, User717, User785, and User918,
are examples of this pattern. Similarity, Figure 8c) for
version D contains many instances, such as the clusters
around user nodes, User76, User140, User259, User515 and
User571.

Significance. Users reporting a large number of
problems are ones that developers should examine closer.
The user graph shows such users as large nodes. However,
the mapping from the user to specific problems is not visible
in the user graph. We want to better understand the

distribution of problems generated by a particular user. In
the same way we examine the distribution of a particular
problem across different users. By exploring these users, we
can then study if their applications are misconfigured and
whether their results should be ignored. Or if they are facing
a large number of problems and are ideal users to work with
closely. In essence, this pattern helps reduce the time of
developers in finding good testing candidates.

C. Accuracy of our Pattern Identification Approach
We manually verified the accuracy of the identified patterns
for all four versions. We hope to achieve high accuracy so
we can reduce the time wasted by developers as they

Problem User User reports problem

Problem User User reports problem

a) Filtered Interaction Graph before
Pattern Identification

b) Distributed Problem Coverage
Pattern Extracted

c) Distributed User Coverage
Pattern Extracted

a) Filtered Interaction Graph before
Pattern Identification

b) Distributed Problem Coverage
Pattern Extracted

c) Distributed User Coverage
Pattern Extracted

TABLE IV. STATISTICS VALIDATION OF PATTERNS FORM PROBLEM AND USER GRAPHS

Version Interconnected
Problem

Near duplicate problem Distinct User Clusters Distributed Problem
Coverage

Accuracy # of
instances

Accuracy # of
instances

Probability
of locating

alternatives

of
instances

Accuracy # of
instances

A 70% 12 70% 10 92% 6 100% 6
B 69% 13 N/A N/A 100% 2 100% 5
C 57% 7 50% 2 98% 3 100% 6
D 68% 22 60% 15 89% 6 100% 14

explore the identified patterns. For each problem report (i.e.,
node), we check its stack trace, source code, bug reports,
change logs and severity reports to identify the logical
relations among problems, among users and between users
and problems. For example, to verify the interconnected
problems pattern, we manually check the call stack
associated with each of the problems (i.e. nodes shown in
the problem graphs), to see if the problems are considered to
be interconnected problems. For each type of patterns
except the distinct user cluster pattern, the accuracy
measures the percent of correctly identified instances of a
pattern over the total number of identified instances. Due to
the large number of users appearing in some of the user
clusters, it is not feasible to manually review the logs for
each user. We randomly select a percentage of the users
from a cluster to verify if there exists another user which
could serve as a replacement for problem replication. For
clusters larger than 60 users, we test 10% of users, 30% for
clusters with the size between 30 and 60, and 50% for
clusters less than 30 users. We then calculate the average
probability of locating alternatives in the same cluster. Table
IV summarizes the results of the evaluation. We do not
measure the recall for the identified patterns since
measuring the recall requires knowing the total number of
instances for each pattern. We would need to manually
check every pair of nodes for each pattern. This is
unfeasible task given the large size of the data.

Table IV shows that approximately 66% of the
instances of the interconnected problems pattern are verified
to be related. Some interconnected problems were found not
to be related after manual verification. For example,
examining the stack trace we find that the problem was due
to two different unrelated modules, but coincidentally, the
problems occurred with comparative frequency and time.

We found that on average 60% of identified near
duplicate problems were manually verified to be duplicates.
The misidentified duplicates problems are often connected
to a central problem without sufficient similarity. For
example, the misidentified duplicate problems are connected
to the central problem, but have very different functionality.

For the distinct user cluster pattern, the average
probability of locating alternative users in the same cluster
is high for all four versions. Nevertheless, users in the same
cluster do not always report the exact same set of problems
to each other. Therefore, a given problem reported by one

user may not be reported by a user who is randomly picked
from the set of the connected users in the cluster.

Our prototype tool can accurately locate the distributed
problem coverage pattern with 100% accuracy. To verify
the accuracy of the identified instances of this pattern, we
compare the identified problems with the high severity
reports that are filed during the development of these
versions. We found that all problem nodes map to high
severity reports.

To verify the accuracy of the identified distributed user
coverage pattern, we would need detailed information about
each user’s configuration so we can determine the rationale
for the user reporting such large variety of problems.
Unfortunately, such information is not available in our data
set. Therefore we are not able to verify the accuracy of the
distributed user coverage pattern.

IV. RELATED WORK
Studying the operational distribution of a program is an
important and practical area of research proposed by Musa
[11]. Different users exercise different subsets of the
features provided by an application. User profiles can be
built by instrumenting the in-field use of an application.
These profiles can be used to compare different users using
various similarity and dissimilarity metrics (e.g. [2] and
[10]). Using this knowledge one can reduce the number of
test cases and determine similar user groups. When studying
large distributed software applications, detailed
instrumentation is not feasible due to the high overhead.
Such detailed instrumentation consumes extensive resources
and produces a large amount of data which is challenging to
transmit back to central repositories for further analysis. In
our work we analyze the already-collected data, the in-field
problem reports, to derive an approximation of the
operational distribution of an application (i.e., its problem
profile). In contrast to an operational profile, users with
different usage patterns might not have the same problems.

Various approaches are used to study and compare
different profiles. Sarbu et al. [15] use techniques to profile
device driver behavior using temporal metrics obtained for
I/O traffic characterization. They aim to improve testing on
real-life workloads and test their technique on actual
Windows drivers. Dickinson et al. [3] use clustering
analysis techniques to study the relation between different
operational profiles (e.g., users) using mathematical

techniques. Orso et al. [13] and Jones et al. [8] use
visualization techniques to study the similarity of profiles by
mapping them to the lines of code and visualizing the
relation between the different lines to identify the location
of faults. Our approach visualizes relations at a higher level
of abstraction (i.e., at the level of field problems and users)
instead of lines of code. Our analysis could be also
performed at the level of lines of code; however this would
require a more detailed instrumentation of the application.

Christmansson et al. inject software errors directly into
an application and observe the outcome [1]. Such fault
injections approaches could be used to verify the soundness
of the clusters in our visualization by checking if a
representative user of a cluster would exhibit similar
problems to other users in the clusters.

In our work, we use spring-based layout algorithms to
produce clusterings of field reports and users. There is a
large and active area of research in the use of clustering
techniques to understand software artifacts [7, 12, 14, 16,
17, 18]. In contrast, our work is primarily visual whereas the
aforementioned techniques produce textual output
representing the different clusters.

Prior work which visualizes relations between software
artifacts (e.g., Harald et al. [6]) employs basic threshold
filtering techniques. For example, only edges above a
specific threshold are shown to reduce clutter and avoid
over-plotting. Our approach uses a statistical filtering
algorithm. The statistical filtering is possible due to the
large size of the data used in our case study.

V. CONCLUSION AND FUTURE WORK
We present three types of graphs for visualizing the field

testing results. The graphs provide a high level view of the
large amount of field testing results. We describe five
patterns which help managers and developers make best use
of the results of the field testing and improve future field
testing efforts. We automate the identification of patterns to
enable the analysis of large scale data for practitioners. As
all visualizations, the graphs lack the information needed for
detailed analysis. However, the visualization flags important
and interesting patterns out of the large data at hand.

In the future, we plan to conduct an empirical study to
investigate the improvement in field testing effort using the
proposed approach. We expect the need to extend our
catalog of patterns as we study multiple versions of different
applications.

ACKNOWLEDGMENTS
We would like to thank Dr. Bram Adams, from Queen’s

University, for his valuable feedback on our work and his
GUESS expertise.

We are grateful to Research In Motion (RIM) for
providing access to the data used in the case study. The
findings and opinions expressed in this paper are those of
the authors and do not necessarily represent or reflect those
of RIM and/or its subsidiaries and affiliates. Moreover, our

results do not in any way reflect the quality of RIM’s
software or hardware products.

REFERENCES
[1] J. Christmansson and R. Chillarege. Generation of an error

set that emulates software faults based on field data.
International Symposium on Fault Tolerant Computing, 1996,
pp. 304-313.

[2] W. Dickinson, The Application of Cluster Filtering to
operational testing of Software. Doctoral dissertation. Case
Western Reserve University. May 2001.

[3] W. Dickinson, D. Leon, and A. Podgurski, Finding failures by
cluster analysis of execution profiles. The International
Conference on Software Engineering 2001, pp.339- 348.

[4] GUESS: The Graph Exploration System.
http://graphexploration.cond.org/. Last access on June 2009.

[5] J. P. Guilford. The phi coefficient and chi square as indices
of item validity. Springer. 1941.

[6] G. Harald, J. Mehdi, R. Claudio: Visualizing Software
Release Histories: The Use of Color and Third Dimension.
International Conference on Software Maintenance, 1999,
pp.99-108

[7] D. H. Hutchens and V. R. Basili. System structure analysis:
Clustering with data bindings. IEEE Transactions on
Software Engineering, Aug. 1985, pp. 947-757.

[8] J.A. Jones, M.J. Harrold and Stasko, J. Visualization of test
information to assist fault localization. The International
Conference on Software Engineering 2001, pp. 467-477,
2001.

[9] H.O. Lancaster. Chi Squared Distribution (Probability &
Mathematical Statistics). Wiley. 1969.

[10] D. Leon, A. Podgurski and White, L. J. 2000. Multivariate
visualization in observation-based testing. The International
Conference on Software Engineering, 2000, pp. 116-125.

[11] J. D. Musa, Operational Profiles in Software-Reliability
Engineering. IEEE Software. 10 (2), March 1993, pp.14-32.

[12] M. G.H. Omran, Andries P. Engelbrecht, A. Salman. An
overview of clustering methods. Intelligent Data Analysis
Vol 11 Issue 6, December 2007, pp. 583-605.

[13] A. Orso, D. Liang, M.J. Harrold, and R. Lipton. Gamma
system: Continuous evolution of software after deployment.
The International Symposium on Software Testing and
Analysis, 2002, pp. 65-69.

[14] P. Pantel, D. Lin. Document clustering with committees. The
Annual International ACM SIGIR Conference on Research
and development in information retrieval. 2002, pp.199-206.

[15] C. Sarbu, A. Johansson, N. Suri, N. Nagappan. Profiling the
Operational Perhavior of OS Device Drivers. The
International Symposium on Software Reliability
Engineering. 2008, pp.127-136.

[16] V. Tzerpos, R.C. Holt. Software Botryology: Automatic
Clustering of Software Systems. The International Workshop
on Program Comprehension, 1998, pp. 811-818.

[17] T. A. Wiggerts. Using clustering algorithms in legacy
systems remodularization. The Working Conference on
Reverse Engineering, 1997, pp. 33-43.

[18] S. Zhong, J. Ghosh. A unified framework for model based
clustering. The Journal of Machine Learning Research, Vol
4, 2003, pp. 1001-1037.

