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Abstract— Field testing of software is necessary to find 
potential user problems before market deployment.  The large 
number of users involved in field testing along with the variety 
of problems reported by them increases the complexity of 
managing the field testing process. However, most field testing 
processes are monitored using ad-hoc techniques and simple 
metrics (e.g., the number of reported problems). Deeper 
analysis and tracking of field testing results is needed. This 
paper introduces visualization techniques which provide a 
global view of the field testing results. The techniques focus on 
the relation between users and their reported problems. The 
visualizations help identify general patterns to locate the 
problems. For example, the technique identifies groups of users 
with similar problem profiles. Such knowledge helps reduce 
the number of needed users since we can pick representative 
users. We demonstrate our proposed techniques using the field 
testing results for four releases of a large scale enterprise 
application used by millions of users worldwide. 

Keywords- User Logs; Visualization; Pattern Identification; 
Automation 

I.  INTRODUCTION 
Software must endure rigorous field testing before 

market deployment.  Field testing helps uncover problems 
due to unexpected user behaviors and unforeseen usage 
patterns in a natural setting. Instrumented versions of the 
application are used during field testing. These versions 
enable the collection of field data in real-time without 
developer interference.  A problem report is sent and stored 
in a central repository when an unexpected situation occurs. 
Common information in the report includes error messages 
and call stacks for a problem. The report also records the 
user who had the problem. 

Developers must analyze and resolve these reported 
problems. Problems reported by a larger number of users are 
a high priority for developers to resolve. To verify the repair 
of a problem or to understand its peculiarity, developers must 
often replicate the scenarios which trigger the problem. By 
understanding the characteristics of the users reporting a 
problem and its peculiarities, developers should be able to 
gain insight into ways of resolving it. 

 In the current state of practice, developers often examine 
problems individually without a global view on the relation 
between the different problems and the relation between the 
users reporting these problems. For instance, it may be the 
case that: 

1. A particular set of problems co-occur frequently 
together in the same time in a problem report therefore 
studying and resolving any one of these problems might 
lead to the resolution of all these problems. With some 
problems easier to replicate than others, such 
information is likely to lead to faster resolution of these 
problems. We developed a problem graph to highlight 
such information.  

2. Several users often report the same set of problems (i.e., 
share the same problem profile); therefore recruiting a 
few of these users to verify any fix is often a faster 
option instead of deploying the fix across the field 
blindly and awaiting problem reports. We developed a 
user graph to identify users reporting common 
problems. 

3. We can cross reference the problems reported and 
recruit users to replicate them. A large number of 
problems are reported; however very few of these 
problems have a wide impact on many users. Fixing 
problems with high impact is usually a high priority 
effort. We developed an interaction graph to give a 
global view of the relation between the participants of 
field testing (i.e., users) and the outcome of the testing 
(i.e., problems).   

 
Using our visualization, developers can automatically 

analyze the large amount of data reported during field 
testing. Our visualization identifies patterns that demonstrate 
the user and problem interactions. The patterns allow 
developers to tackle problems with a global view instead of 
individually. In particular, such patterns help developers 
categorize, prioritize, and replicate problems, allowing 
developers to observe new relationships that are often 
overlooked in practice. By visualizing the field testing results 
across multiple product releases, developers can compare the 
progress of field testing efforts for different releases. 

 
Organization of the Paper. The rest of the paper is 
organized as follows.  Section 2 presents our three 
visualizations: problem graph, user graph and interaction 
graph. Section 3 presents a case study which demonstrates 
the use of our visualization to study the field testing results 
of a large enterprise application. Through our study we note 
several patterns in the visualization. We developed an 
automated approach to identify such patterns. We discuss 
these patterns and report on the accuracy of our automated 



approach. Section 4 discusses related work. Finally, Section 
5 draws conclusions and discusses future work. 

II. OUR THREE GRAPHS FOR FIELD DATA 
In this section, we introduce the three types of graphs that 

are produced from the field data. Our graphs could have as a 
node: a problem report, a user, or both. The edges in our 
graphs are based on different types of relations between the 
nodes. For example, an edge between two nodes in a 
problem graph indicates that the two nodes (i.e., problems) 
co-occur frequently together in a report. While an edge 
between two nodes in a user graph indicates that the two 
nodes (i.e., user) frequently report the same types of 
problems. Due to the large number of reported problems and 
users in field testing, we cannot simply show all the edges 
and nodes. Instead we must filter them. In the following 
subsections, we present our three graphs in more detail. We 
discuss the filtering process after the presentation of the three 
graph types. 

A. Problem Graph:  Visualizing the Interaction among 
Problems 
Developers often tackle field problems on an individual 

basis – overlooking the possibility that certain problems may 
be interconnected. For instance, one problem reports that the 
disk is full, while another problem reports that the 
application fails to write to disk. Both problems can occur 
independently for different users or together for the same 
user who attempts to write to a full disk and triggers both 
problems. If the write-failure problem reports were sparse, 
developers might have a hard time to capture and fix the 
write-failure problem. However if developers can determine 
that this rare write-failure problem co-occurs frequently with 
a disk-full problem, developers can use the disk-full problem 
to better understand the write-failure problem and resolve it 
in a timely fashion. This situation occurs often in large 
complex applications, given the different coding and 
reporting standards followed by various groups. By flagging 
relations between problems, we can overcome the fact that 
some reports might be sparse or that some reports are harder 
to reproduce or investigate.  

In a more complex situation, each occurrence of an error 
may trigger a different, yet often limited, number of 
problems. Such an error is often due to the use of an 
uninitialized field or timing/race conditions. When a user 
encounters the error several times, various problems 
associated with the same error can be reported by the same 
user in different occasions. Identifying the problems reported 
by the same user helps developers capture the common cause 
for the problems, and fix all the problems at once.  

Finally, another type of problem co-occurrence happens 
when a single error leads to a cascade of related problems. 
For example, a problem, caused by an error in the code that 
reads data from the network, would often lead to multiple 
problems triggered in the subsequent execution of the 
application (due to the network-read errors). In an ideal 
situation, such problems would have been reported as the 
same type of problem. However, all too often the errors 
might manifest themselves as different problems. For 

example, an error to read from a network might manifest 
itself as the handling of a NullPointer problem, and the 
subsequent problems are reported as out of bound 
processing. The aforementioned situations highlight the 
importance of studying field problems together instead of 
individually. By interlinking problems, developers might 
discover unexpected yet important relations between 
problems during the field testing process. The problem graph 
establishes such interlinking among problems.  

 
Figure 1.  An Example of a Problem Graph  

The problem graph is an undirected graph, GProblem = 
(VP, EP).  The set of nodes, VP, of the graph contains a set of 
problems (i.e., P) reported in the repository. We consider 
problem reports to be the same if they have the same call 
stack recorded when the problems are triggered. The set of 
edges, EP, contains undirected edges, eab={Pa, Pb} if 
problem Pa and problem Pb are reported together by one or 
more user. Each user reports both problems (i.e., Pa and Pb). 
If a large number of users report the two problems together, 
then we believe that such a relation needs to be highlighted 
to developers for further investigation. The graph is 
designed so that only nodes with a direct edge have a 
relationship.  For example, the interconnected nodes P1, P5 
and P6 indicate that all three problems have been reported 
although not necessarily all together. Moreover, there could 
have been three different users reporting each pair of 
problems (i.e., {P1, P5}, {P5, P6} and {P1, P6}) or one user 
reporting the three problems together (i.e., {P1, P5 , P6}}. A 
problem node appears in the problem graph only if it is 
reported together with at least one other problem node by a 
user.   

We add weights to the nodes and edges.  The weight of a 
node indicates the frequency of unique occurrences of that 
problem among users in the field testing repository. 
Visually, nodes are shown as circles with the weight of a 
node depicted as the size of the circle. Looking at Figure 1, 
P1 is reported by more users than P3.  We define the weight 
of edges using statistical filtering techniques. We discuss it 
in Section II.D. Table I summarizes the definition of nodes 
and edges for the Problem Graph. 

B. User Graph: Visualizing the Interaction among Users 
Given the complexity of modern enterprise applications, 

the usage patterns between users tend to vary considerably 
with users forming clusters based on their usage of the 



application. For example, given an application for order 
taking and fulfillment, we would expect that at least two 
user clusters would arise along the two main uses of the 
application (i.e., order taking and fulfillment) with many 
sub-clusters forming based on the peculiarities of use within 
the two large clusters. Different clusters might also arise 
from commonalities across the user population. Similar 
characteristics such as similar hardware configuration or 
usage patterns (e.g., living in areas with bad wireless 
coverage or slow internet connections) are likely to lead 
users to report similar problems.  

Flagging users with common problem profiles is of great 
value to developers. Using this knowledge about user 
clusters, developers could replicate specific problems and 
verify their fixes in an easier fashion. For instance, if most 
users in the order-taking department have the same problem 
profile, then a developer might be able to recruit a particular 
user to deploy additional monitoring on their installation.  
Developers can work closely with that user to solve a 
problem that affects the whole cluster of users in the order-
taking department. Furthermore, using this knowledge about 
user clusters, managers can optimize their planning of future 
field testing efforts by picking at least one representative 
user from each cluster to participate in the field testing for a 
particular software version. Given the limited number of 
users that are willing to participate in field testing efforts 
and the large number of releases that are usually tested in 
parallel, a field-testing manager can distribute their user 
base more strategically. For example, if there are three 
versions of the software under testing and prior field testing 
shows the existence of two distinct user clusters, then the 
manager should ensure the participation of one user from 
each cluster to the three tests instead of randomly picking 
users.  

 
Figure 2.  An Example of a User Graph  

 
We developed the user graph to help identify such 

clusters.  The user graph is an undirected graph, i.e., GUser = 
(VU, EU). The set of nodes, VU, of the user graph contains a 
set of users (i.e., U) who report problems sent to the 
repository. The set of edges, EU, contains an undirected edge 
eab={ua, ub} if users, ua and ub, have reported at least one 
common problem.  

The weight of a user node represents the number of 
unique problems that a user reports with other users.  For 

example a user that reports the same problem with four 
other users has a greater weight than a user who reports two 
common problems with one other user. Visually, nodes are 
shown as squares with the weight of a node depicted as the 
size of the square. Looking at Figure 2, User1 reports more 
problems in common with other users than User3. We define 
the weight of edges using statistical filtering techniques. We 
discuss it in Section II.D. Table I summarizes the definition 
of nodes and edges for the User Graph. 

C. Interaction Graph: Visualizing the Relations between 
Problems and Users 
The interaction graph gives a global view of the results 

of field testing process. The graph cross references the 
relationship between problems and users. The interaction 
graph helps analyze the visualization produced by the other 
two graph types. For example, while the problems are not 
identified within the user graph, the interaction graph could 
be used to cross-reference the specific problems after 
locating a particular user base in the graph. 

The interaction graph is an undirected, weighted graph, 
GInter =(VI, EI). The set of nodes, VI, is the union of the user 
set (i.e., U) and the problem set (i.e., P). Figure 3 illustrates 
an example of the interaction graph. The circular nodes 
represent problems and the square nodes represent users. 
The set of edges, EI, contains an undirected edge, eab={Pa, 
Userb}, if Userb reports a problem, Pa. For the example 
shown in Figure 3, User3 and User7 both report problems P2 
and P3. P1 is reported by User1, User2 and User3.  

 

 

Figure 3.  An Example of an Interaction Graph  

The weight of a user node captures the number of unique 
problems reported by the user. Visually, the weight of a user 
node is shown as the size of the square node. The weight of 
a problem node reflects the frequency of the problem 
occurred during the field testing. Visually, the problems are 
depicted as circles with the weight of a node illustrated as 
the size of the circle. As depicted in Figure 3, User8 reports 
more problems than User1. Problem P2 occurs more 
frequently than problem P1. We define the weight of edges 
using statistical filtering techniques. We discuss it in 
Section II.D. Table I summarizes the definition of nodes and 
edges for the Interaction Graph.  

D. Statistical Filtering and Weighting 
Showing all the users and problems that exist in a field 

testing repository would lead to very complex graph with  



TABLE I.  SUMMARY OF THE THREE TYPES OF GRAPHS 

Graph Entity Entity type Weight Filtering 

Problem 
Graph 

Node Problem The number of different users who report the 
problem at least once in the repository 

Must co-occur with at least one 
other problem after edge filtering 

Edge Both problems co-occur  Statistical weight (see section II.D) Statistical filtering (see section II.D) 

User 
Graph 

Node User The number of unique problems that a user 
has in common with other users 

Must report a single problem after 
edge filtering. 

Edge Both users report the 
same problems 

Statistical weight (see section II.D) Statistical filtering 
(see section II.D) 

Interaction 
Graph 

Node Problem, User Problem: The number of times a problem is 
reported by any user 
User:  The number of unique problems 
reported by a user 

Same as above for problem and user 
nodes 

Edge User reports the Problem Statistical weight (see section II.D) Statistical filtering  
(see section II.D) 

 
high over plotting. Therefore we chose to filter the edges 
and nodes in the created graph. Traditionally such filtering 
is performed by showing edges which are above a particular 
threshold. For example, we could show edges between 
nodes which exhibit a co-occurrence relation 70% of the 
time or based on basic counts (e.g. 70 times). Instead we 
choose to perform statistical filtering given the large size of 
the data. 

The goal of our statistical filtering is to only show 
edges that do not simply occur due to chance, instead we 
want to show edges that indicate statistically significant 
relations (i.e., association). We perform a chi-square (χ2) 
test on each edge and filter edges in all graphs based on the 
results of the test [9]. Table II shows the 2x2 contingency 
table used to calculate the chi-square value. The same 
approach is used for all three graphs. For example, in the 
problem graph, the cell (Pa, Pb) counts the frequency (i.e., 
f1) where problems Pa and Pb appear together for any users. 
The cell (Pa, ¬Pb) counts the number of times (i.e., f2) that 
problem Pa occurred but not problem Pb for a user.  The cell 
(¬Pa, Pb) counts the number of times (i.e., f3) that problem 
Pb occurs but not problem Pa. The cell (¬Pa, ¬Pb) denotes 
the total number of times (i.e., f4) that neither problem is 
reported. χ2 is calculated using formula (1). Looking at the 
chi-square (χ2) statistics distribution tables, we use a chi-
square value of 5.99 to filter edges, indicating that we are 
95% confident (i.e., p value<0.05) about the statistical 
validity of a shown edge.  

Edges are given a statistical weight if it satisfies the 
conditions of statistical filtering (i.e., are statistically 
significant enough to be shown).  The statistical weight of 
an edge is calculated using the phi measure [5]. The value of 
phi measures the strength of the relationship regardless of 
the sample size.  It was chosen primarily to normalize the 
edge thickness in a given sample so that no edge would 
detract from the graph.  It is based on the chi-squared test as 
shown in formula (1). The value of phi is computed using 
formula (2). A value of 0 for phi means that there is no 
association between two nodes (e.g., problems) and a value 

of 1 indicates a perfect association (i.e. both nodes always 
co-occur).  Therefore, thick edges for any graph display phi 
values close to 1. The phi value is statistically significant 
when the χ2 value is greater or equal to 5.99 (i.e., p< 0.05).  
We filter the edges if the weight of the edges is not 
statistically significant. Thin edges indicate low phi values 
meaning that the minimal statistical significance. 

TABLE II.  2X2 CONTINGENGY TABLE 

 Pb ¬Pb 
Pa f1 f2 

¬Pa f3 f4 
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f1, f2, f3, and f4 are the frequencies of two independent events (e.g., 
problems) that appear for different cases listed in Table IIF. 
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x 2 is the chi squared value calculated in formula (1).  f1,, f2, f3, 
and f4 are the frequencies of the two independent events as 
described in Table II. 

III. CASE STUDIES 
To demonstrate the benefits of using our proposed 

graphs, we performed a case study using four test versions of 
a large scale enterprise software application used by millions 
of users worldwide for communication.  The application is 
written in the Java programming language. Table III shows 
descriptive statistics for each version.  The data collected for 
this study was gathered over the course of 30 days within a 
field test of each version. To ease the comparison of 
problems of each version, identical problems appearing in 
any of the four versions are assigned the same identifier. 



The objective of this case study is to identify if there are 
any significant differences or trends among the four versions 
of the application. We built a prototype tool that can 
automatically analyze the three types of graphs to identify 
patterns common in all versions.  Due to space constraints, 
we only display results for versions A and D. Both versions 
have the highest number of users and reported problems. We 
also report on the accuracy of our automated pattern 
identification approach.  

TABLE III.  STATISTICS FOR THE FOUR STUDIED FIELD TESTS 

Version #  of Users # of Reported Problems  
A 367 342 
B 48 85 
C 206 143 
D 1,302 883 

A. Steps for Identifying Patterns from the Graphs 
Our prototype tool automatically generates the three 

types of graphs and identifies patterns in the following 
steps: 
 
1. For all versions, we use our prototype tool to 

automatically analyze each problem report to determine 
the user who reported the problem and to determine 
similar problems using the reported call stacks. We also 
identify similar problems across all the studied versions.  

2. We generate the edges between each user and problem. 
We apply statistical filtering and weighting of the edges 
as described in Section II.D and summarized in Table I.  
We filtered nodes which no longer have edges attached 
to them. 

3. We visualize the graphs using a spring-based layout 
algorithm that is built in the GUESS (Graph Exploration 
System) [4]. GUESS is a system and language for 
visualizing and manipulating graph structures. GUESS 
accepts command scripts, which help highlight identified 
patterns from the data set. For example, Figures 4a), 6a), 
and 7a) are the three types of graphs visualized for 
version A after statistical filtering.   

4. Our prototype tool automatically identifies the patterns 
in the data set. The prototype tool is built using GUESS 
commands to look for certain characteristics, such as the 
number of edges attached to a node and the thickness of 
edges. Such characteristics enable the automatic 
detection of instances of the patterns in the graphs. For 
example, to find strongly interconnected problems in the 
problem graph, the prototype tool isolates problems that 
have the thickest edges connecting them compared to 
other adjoining problem nodes.  Looking at Figure 4, 
Figures 4b) and 4c) shows instances of two patterns 
from the visualization of version A in Figure 4a). 
Similarly instances of patterns in version D are depicted 
in Figure 5b) and 5c) based on Figure 5a).   

B. Identified Patterns 
We automatically identify five patterns common to all 

four versions using the three types of graphs. We summarize 
the patterns using the following template: 
• Symptom: describes the characteristics of the pattern in 

the graphs which first caught our attention.  
• Examples: show examples from the studied application. 
• Significance: explains the benefits of identifying the 

pattern. 

B.1    Interconnected Problems 
Symptom. This pattern is found in the problem graphs.  

The pattern is characterized by a thick (i.e., statistically 
significant) edge connecting adjacent problem nodes. The 
sizes of connected nodes can vary.  This indicates that one 
problem is reported soon after another problem, suggesting 
a chain reaction. More than two problem nodes can be 
interconnected with thick edges. This indicates a longer 
chain effect among the interconnected problems.   

Examples. Figure 4b) shows the identified 
interconnected problems pattern for version A. In the graph, 
we found that problem pairs {P2, P16} and {P35, P41} are 
separate examples of the interconnected problems pattern 
with their thick edges between each of the two node pairs. 
Similarly, Figure 5b) visualizes the interconnected problems 
pattern recognized in version D. For example in Figure 5b), 
the interconnected problems pattern is exhibited by the thick 
edges, such as {P365, P366} and {P702, P708}.  The node size 
indicates the frequency of the problem being reported by 
different users. If the problems are not frequently reported, 
fixing such interconnected problems might not be a high 
priority. For example, as illustrated in Figure 5b), the node 
sizes of problems P365 and P366 are much bigger than other 
problems. Therefore, fixing problems P365 and P366 is a 
higher priority than fixing problems P702 and P708 because 
P365 and P366 are reported by a larger number of users. 

Significance. Examining a particular problem might 
prove difficult to replicate or fix. However, that problem 
might co-occur frequently with another problem. For 
example, due to a chaining effect one problem might always 
be followed by another problem meaning one problem 
cannot occur without the other occurring first.  Problems 
that are intertwined in this fashion indicate a series of chain 
effects that eventually lead to a final problem.  It is desirable 
to find these patterns to eliminate the initial problem so it 
cannot propagate.  

B.2    Near Duplicate Problems 
Symptom. This pattern is recognized in the problem 

graphs. It is characterized by large problem nodes that have 
many smaller problem nodes attached to them. In effect the 
large node and its smaller neighboring nodes are essentially 
the same problem (i.e., they are nearly duplicates of each 
other). However, when users alter their usage slightly, the 
two problem reports are recognized as different problems.  



 
 

Figure 4.  Visualization of the Problem Graphs for Version A. 

 
 
 
 

Figure 5.  Visualization of the Problem Graphs for Version D. 

Examples. Figures 4c) and 5c) show the near duplicate 
problem patterns identified from both versions. For 
example, looking at Figure 4c), P3, P16, P48 and P406 
represent nodes with the duplicate problems. Such problem 
nodes have smaller nodes that branch off them. Similarly, 
the problem graph of version D, shown in Figure 5c), has 
instances of this pattern which centers around the problem 
nodes, such as P101, P208 and P366 and P687. 

Significance. Often during field testing, a set of 
problems are reported infrequently. Through close 
investigation, we might determine that the set of problems is 
a special case of a frequently-occurring problem (i.e., the 
near duplicates of each other). In this case, it is desirable to 
assign the investigation of both problems to the same 
developer. 

B.3    Distinct User Cluster 
Symptom. This pattern is found in the user graph. It is 

characterized with large clusters of user nodes that are 
tightly connected. The clusters are formed by applying the 
spring-based layout algorithm which groups the user nodes 
with stronger association closer. The statistical filtering and 
weighting described in Section II.D ensure that the clusters 
are statistically significant and not simply due to chance. 
The clusters are visually identified from the user graph.  

Examples. Figure 6 shows the user graph for both 
versions. We note that each version manifests its own 
distinct clusters of user nodes. Version A has a large central 
cluster (i.e., cluster 1) with several splinter clusters. It 
indicates that the majority of users report the same set of 
problems and are indistinguishable by the problems they 

Problem Appears Together 

Problem Appears Together

a) Filtered Problem Graph Before 
Pattern Identification  

b) Interconnected Problem Pattern 
Extracted  

c) Near Duplicate Pattern 
Extracted  

a) Filtered Problem Graph Before 
Pattern Identification 

b) Interconnected Problem Pattern 
Extracted 

c) Near Duplicate Pattern 
Extracted  



 
 

 
Figure 6.  Visualization of the User Graphs for Both Versions. 

report. Version D has six more distinctive clusters. It shows 
that the problems among users are more distinctive.   

Significance. Identifying user clusters based on common 
problem profiles helps practitioners in the management of 

current field testing efforts and the planning of future 
efforts. Developers can work closely with representative 
users of clusters to gain a better understanding of their 

problems through interviews and additional instrumentation. 
Furthermore, the representative users could be used to 
replicate problems and verify fixes before they are deployed 
more widely during the field testing. The identification of 
user clusters could also help managers in planning future 
field testing efforts. Managers can ensure that each field test 
run has representative users from each cluster to guarantee a 
wider and more general testing of an application. 

B.4    Distributed Problem Coverage 
Symptom. This pattern is uncovered by analyzing the 

interaction graph.  It is characterized with a problem node 
having a large number of adjoining user nodes. To prioritize 
the fixing of problems, we identify the problems reported by 
a large number of users. If a problem node is attached to a 
large number of user nodes, it presents a wide spread 
problem.  The thicknesses of the edges show the distribution 
of the problem occurrence across the users. If we can 
identify a very thick edge to a particular user, this indicates 
that this problem primarily occurs for that user. If a problem 
node is attached to a small number of user nodes, the 
problem is not widely spread. Part of the analysis also 
involves examining the users who report the problem to 
determine if they report a large number of problems.  

Examples. Figures 7b) and 8b) show the distributed 
problem coverage patterns identified from the interaction 
graph for versions A and D respectively. Looking at the 
graph for version A depicted in 7b), we note several 
instances of this pattern, such as the clusters around the 
problems, P16, P406, and P408. For example, problem, P16 and 
P408 are reported by almost the same set of users. The 
interaction graph of version D illustrated in Figure 8b) 

contains many instances of this pattern, such as the clusters 
around the problem nodes, P81, P172, P183, P232, P422, P676, and 
P678. As a result, these problems are good candidates to fix 
first.     

Significance. Prioritizing which problems to address 
first is often a complex decision involving the criticality of 
the problem and its widespread impact on the user base. 
Given two problems that occur frequently, it is often 
desirable to fix problems that impact a larger number of 
users evenly. Counting the number of users that encounter 
the problem is a good metric. However, the metric fails to 
capture the frequency of the occurrence of the problem. For 
example, given a problem which occurs 100 times, it could 
be the case that the problem occurs 80 times for a single 
user and very infrequently for another 20 users. Or it could 
be that the problem occurs evenly across the 21 users. A 
visualization that shows this distribution help in the 
prioritization of problems. Moreover we must consider each 
user that has this problem in the context of the other 
problems. Referring back to our previous example of a user 
with a problem being reported 80 times, if we notice that 
this user is reporting a large number of other problems, it 
might be the case that this user’s installation or environment 
has issues and that the problem is not as frequently 
occurring as we thought. 

B.5    Distributed User Coverage 
Symptom. This pattern shows up in the interaction 

graph with a large user node having many adjoining 
problem nodes. This pattern appears visually as a star-like 
shape with a center user node and problems radiating out of 
that user node. 

Reports same problem(s) User ClusterUser 

a) User graph for Version A b) User graph for Version B 



 
 
 
 

Figure 7.  Visualization of the Interaction Graph for Version A. 

 
 
 
 

Figure 8.  Visualization of the Interaction Graph for Version D 

Examples. Figures 7c) and 8c) show the distributed user 
coverage patterns extracted from both versions. As 
illustrated in Figure 7c) for version A, the clusters around 
user nodes, User10, User258, User717, User785, and User918, 
are examples of this pattern.  Similarity, Figure 8c) for 
version D contains many instances, such as the clusters 
around user nodes, User76, User140, User259, User515 and 
User571.  

Significance. Users reporting a large number of 
problems are ones that developers should examine closer. 
The user graph shows such users as large nodes. However, 
the mapping from the user to specific problems is not visible 
in the user graph. We want to better understand the 

distribution of problems generated by a particular user. In 
the same way we examine the distribution of a particular 
problem across different users. By exploring these users, we 
can then study if their applications are misconfigured and 
whether their results should be ignored. Or if they are facing 
a large number of problems and are ideal users to work with 
closely.  In essence, this pattern helps reduce the time of 
developers in finding good testing candidates. 

C. Accuracy of our Pattern Identification Approach 
We manually verified the accuracy of the identified patterns 
for all four versions. We hope to achieve high accuracy so 
we can reduce the time wasted by developers as they 

Problem User User reports problem 

Problem User User reports problem 

a) Filtered Interaction Graph before 
Pattern Identification 

b) Distributed Problem Coverage 
Pattern Extracted

c) Distributed User Coverage 
Pattern Extracted

a) Filtered Interaction Graph before 
Pattern Identification  

b) Distributed Problem Coverage 
Pattern Extracted 

c) Distributed User Coverage 
Pattern Extracted 



TABLE IV.  STATISTICS VALIDATION OF PATTERNS FORM PROBLEM AND USER GRAPHS 

Version  Interconnected 
Problem  

Near duplicate problem Distinct User Clusters  Distributed Problem 
Coverage  

Accuracy # of 
instances 

Accuracy # of 
instances 

Probability 
of locating 

alternatives  

# of 
instances 

Accuracy # of 
instances 

A 70% 12 70% 10 92% 6 100% 6 
B 69% 13 N/A N/A 100% 2 100% 5 
C 57% 7 50% 2 98% 3 100% 6 
D 68% 22 60% 15 89% 6 100% 14 

 
explore the identified patterns. For each problem report (i.e., 
node), we check its stack trace, source code, bug reports, 
change logs and severity reports to identify the logical 
relations among problems, among users and between users 
and problems. For example, to verify the interconnected 
problems pattern, we manually check the call stack 
associated with each of the problems (i.e. nodes shown in 
the problem graphs), to see if the problems are considered to 
be interconnected problems. For each type of patterns 
except the distinct user cluster pattern, the accuracy 
measures the percent of correctly identified instances of a 
pattern over the total number of identified instances. Due to 
the large number of users appearing in some of the user 
clusters, it is not feasible to manually review the logs for 
each user. We randomly select a percentage of the users 
from a cluster to verify if there exists another user which 
could serve as a replacement for problem replication. For 
clusters larger than 60 users, we test 10% of users, 30% for 
clusters with the size between 30 and 60, and 50% for 
clusters less than 30 users. We then calculate the average 
probability of locating alternatives in the same cluster. Table 
IV summarizes the results of the evaluation. We do not 
measure the recall for the identified patterns since 
measuring the recall requires knowing the total number of 
instances for each pattern. We would need to manually 
check every pair of nodes for each pattern. This is 
unfeasible task given the large size of the data. 

Table IV shows that approximately 66% of the 
instances of the interconnected problems pattern are verified 
to be related. Some interconnected problems were found not 
to be related after manual verification. For example, 
examining the stack trace we find that the problem was due 
to two different unrelated modules, but coincidentally, the 
problems occurred with comparative frequency and time.   

We found that on average 60% of identified near 
duplicate problems were manually verified to be duplicates.  
The misidentified duplicates problems are often connected 
to a central problem without sufficient similarity. For 
example, the misidentified duplicate problems are connected 
to the central problem, but have very different functionality.  

For the distinct user cluster pattern, the average 
probability of locating alternative users in the same cluster 
is high for all four versions. Nevertheless, users in the same 
cluster do not always report the exact same set of problems 
to each other. Therefore, a given problem reported by one 

user may not be reported by a user who is randomly picked 
from the set of the connected users in the cluster.   

Our prototype tool can accurately locate the distributed 
problem coverage pattern with 100% accuracy. To verify 
the accuracy of the identified instances of this pattern, we 
compare the identified problems with the high severity 
reports that are filed during the development of these 
versions. We found that all problem nodes map to high 
severity reports.  

To verify the accuracy of the identified distributed user 
coverage pattern, we would need detailed information about 
each user’s configuration so we can determine the rationale 
for the user reporting such large variety of problems. 
Unfortunately, such information is not available in our data 
set. Therefore we are not able to verify the accuracy of the 
distributed user coverage pattern. 

IV. RELATED WORK 
Studying the operational distribution of a program is an 
important and practical area of research proposed by Musa 
[11]. Different users exercise different subsets of the 
features provided by an application. User profiles can be 
built by instrumenting the in-field use of an application. 
These profiles can be used to compare different users using 
various similarity and dissimilarity metrics (e.g. [2] and 
[10]).  Using this knowledge one can reduce the number of 
test cases and determine similar user groups. When studying 
large distributed software applications, detailed 
instrumentation is not feasible due to the high overhead. 
Such detailed instrumentation consumes extensive resources 
and produces a large amount of data which is challenging to 
transmit back to central repositories for further analysis. In 
our work we analyze the already-collected data, the in-field 
problem reports, to derive an approximation of the 
operational distribution of an application (i.e., its problem 
profile). In contrast to an operational profile, users with 
different usage patterns might not have the same problems. 

Various approaches are used to study and compare 
different profiles. Sarbu et al. [15] use techniques to profile 
device driver behavior using temporal metrics obtained for 
I/O traffic characterization.  They aim to improve testing on 
real-life workloads and test their technique on actual 
Windows drivers. Dickinson et al. [3] use clustering 
analysis techniques to study the relation between different 
operational profiles (e.g., users) using mathematical 



techniques. Orso et al. [13] and Jones et al. [8] use 
visualization techniques to study the similarity of profiles by 
mapping them to the lines of code and visualizing the 
relation between the different lines to identify the location 
of faults. Our approach visualizes relations at a higher level 
of abstraction (i.e., at the level of field problems and users) 
instead of lines of code. Our analysis could be also 
performed at the level of lines of code; however this would 
require a more detailed instrumentation of the application.  

Christmansson et al. inject software errors directly into 
an application and observe the outcome [1]. Such fault 
injections approaches could be used to verify the soundness 
of the clusters in our visualization by checking if a 
representative user of a cluster would exhibit similar 
problems to other users in the clusters.  

In our work, we use spring-based layout algorithms to 
produce clusterings of field reports and users. There is a 
large and active area of research in the use of clustering 
techniques to understand software artifacts [7, 12, 14, 16, 
17, 18]. In contrast, our work is primarily visual whereas the 
aforementioned techniques produce textual output 
representing the different clusters.  

Prior work which visualizes relations between software 
artifacts (e.g., Harald et al. [6]) employs basic threshold 
filtering techniques. For example, only edges above a 
specific threshold are shown to reduce clutter and avoid 
over-plotting. Our approach uses a statistical filtering 
algorithm. The statistical filtering is possible due to the 
large size of the data used in our case study. 

V. CONCLUSION AND FUTURE WORK 
We present three types of graphs for visualizing the field 

testing results. The graphs provide a high level view of the 
large amount of field testing results. We describe five 
patterns which help managers and developers make best use 
of the results of the field testing and improve future field 
testing efforts. We automate the identification of patterns to 
enable the analysis of large scale data for practitioners. As 
all visualizations, the graphs lack the information needed for 
detailed analysis. However, the visualization flags important 
and interesting patterns out of the large data at hand.   

In the future, we plan to conduct an empirical study to 
investigate the improvement in field testing effort using the 
proposed approach. We expect the need to extend our 
catalog of patterns as we study multiple versions of different 
applications.  
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