
Studying the Evolution of Software Systems Using Change Clusters

Jay Kothari, Trip Denton, Ali Shokoufandeh, Spiros Mancoridis
Department of Computer Science

College of Engineering
Drexel University

3141 Chestnut Street, Philadelphia, PA 19104, USA
{jhk39, tdenton, ashokouf, spiros}@cs.drexel.edu

Ahmed E. Hassan
Performance Engineering

Blackberry Enterprise Software
Research In Motion (RIM)

Waterloo, Canada
ahmed@myblackberry.com

Abstract

In this paper, we present an approach that examines the
evolution of code stored in source control repositories. The
technique identifies Change Clusters, which can help man-
agers to classify different code change activities as either a
software maintenance or a new development. Furthermore,
identifying the variations in Change Clusters over time ex-
poses trends in the development of a software system.

We present a case study that uses a sequence of Change
Clusters to track the evolution of the PostgreSQL software
project. Our case study demonstrates that our technique
reveals interesting patterns about the progress of code de-
velopment within each release of PostgreSQL. We show that
the increase in the number of clusters not only identifies the
areas where development has occurred, but also reflects the
amount of structural change in code. We also compare how
the Change Clusters vary over time in order to make gen-
eralizations about the focus of development.

1 Introduction

Managers responsible for large software systems are al-

ways in search of techniques to measure and quantify the

development trends in a project. For example, the complex-

ity of the source code or the number of “bad smells” [8] over

time are used to estimate the health of the source code and

the need to schedule future refactoring activities. Similarly,

the number of reported bugs and applied fixes are often used

to determine the readiness of a software system for release.

These techniques help to ensure the long-term health of the

software system and reduce the cost of its maintenance.

We are interested in techniques that give managers an

overview of the code development process enabling them to

characterize the major work activities during a time period.

Finding trends in these work activities will allow managers
to better understand the software system’s life-cycle and

help them plan their development activities accordingly. We

seek to describe source code changes automatically. While

it is possible to retrieve atomic changes in the code from

source control repositories, this information is overwhelm-

ing and requires in depth knowledge of the system to com-

prehend. Even though terms such as perfective, corrective,

and adaptive are used to describe changes to the code; it is

not possible to describe changes to a software system using

these terms in a confident, accurate, and automated fash-

ion. It will require numerous heuristics, human interven-

tion, and intuition to rank changes to source code accord-

ingly. In short, we seek an approach that provides a bal-

ance between the expressiveness of the recovered descrip-

tions and the ease of automating the recovery process.

Consider a progress report from a development team.

Rather than provide specific details regarding the individ-

ual changes to the code, or a biased interpretation of the

activities on the software system we are interested in ob-

jective measurements. These measurements should pro-

vide not only the areas of work, but a statistical description

of the amount of work in those areas. Furthermore, they

should be consistent regardless of the individual reporting

it and should present no bias based on an intimate knowl-

edge of the product’s development. For example, a manager

of a team working may provide the following measures of

progress:

1. We changed over 700 lines of code.

2. We added 400 lines of code and removed 300 lines of

dead code.

3. We modified code in four subsystems.

The first reply deals with changes to the overall size of

system. The second reply specifies the addition and deletion

of code. The third reply is even more specific than the sec-

ond reply as it maps the changes to the exact subsystems.

Instead, a more informed manager interested in providing

Proceedings of the 14th IEEE International Conference on Program Comprehension (ICPC’06)
0-7695-2601-2/06 $20.00 © 2006 IEEE

a more informative description of the progress of his team

might say:

1. All the development that has occurred can be catego-

rized into four distinct areas. Furthermore, for each of

these areas, there is one change that best represents all

the changes that have been applied to the system in that

particular area.

2. One of the areas where development occurred is soft-

ware maintenance since we have seen areas very sim-

ilar to it previously. However, since we have not pre-

viously seen areas similar to the other three areas we

found, they are clearly new development.

3. By associating every change that was applied to the

system during this phase we can find a distribution of

change activities and by proxy, efforts. We can also de-

termine how much overall maintenance occurred ver-

sus new development.

This reply groups the changes under four different

change categories, classifies all the changes under those cat-

egories, and presents the distributions of all the changes that

were applied to the system.

Our approach examines the temporal evolution of code

stored in source control repositories. It employs the no-

tion of “canonical sets” to identify a subset of Canoni-
cal Changes that best represent the modification activities

within a time period. These Canonical Changes act as cen-

tral points for all of the modifications applied to a system in

a given time period, inducing a clustering of all of the mod-

ifications. We call the created clusters – Change Clusters.

Using this clustering we can discover the distribution of

effort across the various change categories. For example,

even though our canonical set analysis may identify 10 dif-

ferent change clusters during a time period, it may be the

case that most changes belong to one or two clusters and

the other clusters contain very few changes. By studying the

distribution of effort, managers can discover if their team is

spread thin focusing on too many areas or they are focused

on a small number of tasks. Our method produces these

unbiased and statistical measurements automatically.

The organization of the paper is as follows. Section 2

motivates our work and presents metrics that will be used

to study evolution and trends in the life-cycle of software

systems. Section 3 describes an overview of the code devel-

opment process. We present source control systems that are

used for large software projects and give an overview of the

type of data stored in them. Section 4 introduces canonical

sets and explains how they are used in our analysis. Sec-

tion 5 details our approach and the techniques used in our

analysis. Section 6 presents a case study, which explores the

applicability of our approach using the PostgreSQL open

source database project. Section 7 discusses related work.

Section 8 presents possibilities for future work. Section 9

concludes the paper.

2 Motivation and Expected Outcomes

A software system undergoes many changes throughout

its lifetime. In this paper, we study the changes applied to

the source code that add new functionality, enhance current

features, and fix bugs. Using canonical sets and clustering

techniques we answer several questions that aid in observ-

ing the development trends of a software system and plan-

ning future development activities. The following is the list

of questions:

1. How many distinct categories of work were there in

a specific phase of development, or specific period of

time?

2. Compared to the work completed in the previous pe-

riod, what are we working on now? If we have shifted

our efforts, where have they been shifted to?

3. What categories of work have been introduced in the

current time period? Are these the introduction of new

features or reimplementation of code? How many ar-

eas have undergone maintenance, and what are those

areas?

4. How much effort has been placed in each of the cat-

egories of work of the current period? How much of

this effort is maintenance and how much is new devel-

opment?

The answers to these questions will help identify trends in

the development process and provide a succinct overview to

characterize the efforts of the development team.

Our approach permits us to identify canonical changes

in partitions (periods) of the lifetime of long lived projects.

These canonical changes represent the main categories of

changes. Using clustering techniques, we classify all other

changes in a time period as being similar to one of the iden-

tified canonical items. This classification causes the cre-

ation of “Change Clusters” that group changes of a time

period into clusters of similar changes. We can then com-

pute and study the following metrics to support a manager’s

inquiries:

• Number of change clusters within a time period: By

studying the number of change clusters per time pe-

riod, we can determine how many activities the devel-

opment team was focused on. For example we would

expect the number of change clusters to spike imme-

diately after a release with a steady decline as it ap-

proaches the next release. This would indicate that de-

velopers are introducing new features as releases ap-

proach.

Proceedings of the 14th IEEE International Conference on Program Comprehension (ICPC’06)
0-7695-2601-2/06 $20.00 © 2006 IEEE

• Number of new change clusters within a time pe-
riod relative to the previous time period: By study-

ing the new change clusters relative to the previous

time period we can identify stable areas of develop-

ment. A cluster that is consistently present from one

period to the next, the cluster can be inferred to be un-

der constant maintenance.

• Number of new change clusters within a time pe-
riod relative to all prior time periods: By studying

the number and nature of new change clusters over

time, we can determine when new features are being

added, features are being reimplemented, or mainte-

nance work is being performed. We would expect to

see a downward trend in these numbers unless several

new features are being added or many partially imple-

mented features are being completed.

• Distribution of changes in a time period between
the identified change clusters: By studying the dis-

tribution of changes we can see how many changes

fall into each cluster and determine how much change

is represented by new or old work. For example, al-

though our analysis may reveal that a time period has

a large number of distinct change clusters, by study-

ing the distribution of changes we can recognize that

the development team is performing maintenance ac-

tivities and that each change cluster contains a small

number of changes. Furthermore we are able to quan-

tify not only the effort placed in each cluster, but also

classify the amount of work completed as new feature

implementation or maintenance.

3 Code Development Process

Source control systems are used extensively by large

software projects to control and manage their source

code [24, 27]; examples are RCS [27], CVS [4, 7] and

Perforce [22]. These systems help coordinate the devel-

opment process between various members of the team and

provide the ability to restore the source code to its state at

any given time in the past. For example, developers can re-

trieve a source code file that is no longer part of the project

or roll back to a previous version of a file if they discovered

that their changes are inappropriate or are too complex to

maintain and understand. Furthermore, source control sys-

tems provide tools to reconcile changes made by developers

working simultaneously on the same file.

The repository of a source control system usually tracks

the creation, and initial content of each file. In addition,

it maintains a record of every change to a file. For every

change, a modification record stores the date of the change,

the name of the developer who performed it, the specific

lines that were changed (added or deleted), and a detailed
explanation message entered by the developer giving the

reason for the change. Using the information stored in the

source control system, we can also recover change sets (files

that were changed together by the same developer within

short time frame). We recover for selected time periods,

change lists, which are the lists of all the changes applied to

a system, in the order that they were applied.

Our analysis uses the information stored in source con-

trol repositories to characterize time periods within the life-

time of a project. Our analysis also compares work done

during a specific time period to work done in prior time

periods. The data used in our analysis is recovered from

source control systems using techniques documented else-

where [13].

An assumption of our analysis is that each change set

contains only changes that are related and focuses on a

specific area of work. In principle, it is possible that a

developer may “check in” several unrelated files together,

though this occurs rarely. This is a reasonable assumption

based on the development process employed by the studied

open source projects and discussions with open source de-

velopers [2, 17, 29]. In most open source projects, access

to the source code repository is limited. Only a few se-

lected developers have permission to submit code changes

to the repository. Changes are analyzed and discussed over

newsgroups, email, and mail lists before they are submitted

[3, 18, 31]. This review process reduces the possibility of

unrelated changes being submitted together. Moreover, the

review process helps ensure that changes contain all rele-

vant files.

4 Computing Canonical Changes

Our technique for computing canonical sets is described

in our previous work [25], where we presented a framework

for reducing a set of features to a smaller subset called the

stable bounded canonical set. In the context of change lists

we refer to this subset as the canonical changes. The set

of canonical changes contains changes that are as dissimilar

as possible and best represent the changes not contained in

that set. More formally, our notion of the canonical set is

the subset with the following properties; members of the set

are minimally similar, members of the set are maximally

similar to changes not in the set, and members of the set are

maximally stable (according to some measure).

The canonical set is a representative subset obtained

through an optimization process that takes into account the

structure of the relationships between the changes. The

structure of the change lists is encoded into a graph where

each change is represented as a vertex. Edges have weights

corresponding to the similarity between their vertices as

measured by the method described in Section 4.1. The

Proceedings of the 14th IEEE International Conference on Program Comprehension (ICPC’06)
0-7695-2601-2/06 $20.00 © 2006 IEEE

Figure 1. Canonical Set Edges: Intra edges
are denoted by red, Cut edges are denoted by
blue.

framework permits a weight to be associated with each ver-

tex that indicates the relative stability of the vertex. For

the work described here, we assign equal weights to all of

the vertices. All changes are considered equally stable and

hence equally important.

To formulate the problem, we refer to edges that have

both endpoints in the canonical set as intra edges (See Fig-

ure 1). We refer to edges that have one endpoint in the

canonical set and the other outside of it as cut edges. The

canonical set can then be described as the subset of ver-

tices such that the sum of the weights of the intra edges is

minimized, the sum of the weights of the cut edges is max-

imized, and the sum of the weights of the vertices in the

canonical set is maximized. Thus the canonical set is a sub-

set of the vertices in the graph that best represents the graph

with respect to the similarity and stability measures.

Graph optimization problems such as this are known

to be intractable [10]. The work of Goemans and

Williamson [11] on the MAX-CUT problem in graphs

showed semidefinite programming (SDP) relaxations to be

useful in obtaining improved approximation algorithms for

several optimization problems. Using similar techniques,

we formulate the canonical set problem as an integer pro-

gramming problem, and then relax it to a semidefinite pro-

gram. We then use an off-the-shelf SDP solver [28] to find

an approximate solution. For details of this procedure the

reader is referred to our previous work [20, 6, 5].

4.1 Similarity Measure

In order to compute the similarity between commits we

considered the Jaccard coefficient. The Jaccard coefficient

is a measurement of asymmetric information on binary vari-

ables. For our purpose we compute the coefficient as:

J(X, Y) =
|X ∩ Y |
|X ∪ Y |

where X and Y represent individual commits. That is, they

are sets of files representing a single commit. We compute

the similarity for each pair of commits in order to obtain the

similarity matrix for the calculation of the canonical set.

4.2 Application of Canonical Sets to Change Lists

In order to gain a better understanding of how canoni-

cal sets can be applied to change lists, let us consider an

example of changes applied to a software system. Given

m unique changes applied to a system listed as the files al-

tered as part of that change, we can compute a similarity

of that change to all the changes that occurred during that

time frame. We list these similarity measures in a m × m
matrix where the diagonal is perfect similarity. Each row

and column represents a different change. The measures

are computed using the Jaccard coefficient.

We then compute, based on this matrix of similarity mea-

sures, the canonical changes of the period. We do not define

a minimum or maximum number of changes to find, and

leave that determination up to the canonical set solver. This

is very important in that we are told how many changes,

from the given set of changes, are needed to represent all

the changes that took place during the period. It is impor-

tant to note that the canonical changes are actual changes

that were applied to the system.

Returning to our example of the changes applied to a

software system we may find that all the changes are very

dissimilar, and have no files in common. Such a situation

would cause our solver to give back the entire set of changes

as canonical as it would require all the changes to represent

the entire set. On the other hand, if the majority were very

small changes that contained only a few files in each change

and one very large change that incorporated all the files of

the other changes, then our solver would provide us with

that one large change as it best represents the entire set of

changes. However, none of these two cases is likely since

similar features are implemented with common files based

on practices of code re-use and modularity [21], resulting in

the localization of changes into sets of files.

5 Approach

In this section we define our approach to analyze source

control repositories to extract the evolution of large software

systems. Using the lists of changes applied to a software

system over its development life-cycle we aim to answer

several questions. Finding the canonical changes helps us

to answer these questions about the life-cycle of a software

system.

Firstly, we wish to determine the types of changes that

were made during each period of the software’s develop-

ment. We identify the length of the period, and obtain the

changes applied to the system during each period.

Proceedings of the 14th IEEE International Conference on Program Comprehension (ICPC’06)
0-7695-2601-2/06 $20.00 © 2006 IEEE

As compared to the work presented by Hassan and

Holt [12], we base our work on the idea that the length

of different periods need not be constant. We can divide

the lifetime of a software system into successive periods of

time as week, month, year, or any arbitrary time frame. In

the context of our approach we chose periods of 3 months,

where periods are defined as development up to the time in

consideration.

Following partitioning the development life cycle of the

system into periods, we compute the canonical changes of

the period using the Jaccard similarity measure. The canon-

ical changes represent the main types or clusters of changes.

Furthermore, the advantage of finding the canonical

changes as opposed to a histogram of files represented in

each change is that the canonical changes actually represent

all the changes of the period that have been applied to the

system. A histogram, on the other hand, simply measures

the frequency of files in each change.

It is also important to note that the number of changes

applied to a system does not skew the results of the canon-

ical changes, a very important feature of our approach. For

example, consider two sets of developers working on the

same features; one commits their changes to a source con-

trol repository frequently, the other does not. Assume that

both groups are working on the same general areas, and the

frequently committing group has 200 commits in the period,

whereas the other has 50. In both cases the approach of

taking the canonical changes will provide us with the same

general clusters. The importance of this is even more exag-

gerated and likely when there are many developers working

on different areas of a project in the same period with differ-

ent styles of commit. Given a mix of developers, some who

commit frequently, and others who do not, if we were to

use the approach of a histogram we would have an inflated

sense of importance on the areas that the developers who

committed frequently worked on. Using canonical changes

we would obtain the same change clusters regardless of the

frequency of commits.

Next, using a clustering technique, we determine the dis-

tribution of the changes that were applied to the system with

respect to the canonical changes of each period. That is, we

classify all the changes that are not canonical in a period as

being in one of the change clusters associated with a canon-

ical change. We use the Jaccard similarity once again to de-

termine the change clusters to which each change belongs

by associating each change with its nearest neighbor in the

set of canonical changes. This gives us not only the change

clusters and the size of each cluster, but by proxy, a measure

of effort distribution.

In order to determine if a change cluster is new, we see

if the same cluster or a similar cluster has been represented

in a previous period. We determine this by counting how

many of the canonical changes of a period have been previ-
ously represented. For each period, we compare its canoni-

cal changes with the canonical changes of every period pre-

vious to it, and compute the canonical changes of the union

of the canonical changes of those two periods. Based on

the results of these period-by-period comparisons, we can

determine if a change cluster has not been previously seen,

indicating new feature development, or significant reimple-

mentation of code. We refer to these changes as new change

clusters over time.

Similarly, we can determine whether the focus of the de-

velopment from one period to the next has changed. Not

only can we observe that from one period to the next the

focus of development went from maintenance to new devel-

opment, but we can state that the focus of development went

from maintaining a particular set of features, and develop-

ing another set of new features, to maintaining another set

of features. We compute the new change clusters relative

to the previous period, which indicate a stability of devel-

opment, as mentioned. If from one period to the next the

change clusters remain constant, the development is fairly

stable; however, if they shift, and we see a significant num-

ber of new canonical changes relative to the previous period

then we can assume the focus has changed. In addition, if

we have an intersection of change clusters over time and rel-

ative to the previous period we observe the implementation

of new features.

Based on these findings, we are able to make conclusions

regarding the development life cycle of a software system as

well as draw conclusions regarding it without having previ-

ous knowledge of the system. We can then go to the revision

history, and corroborate this information to see what new

features have been implemented. In the following section

we provide a case study of PostgreSQL, where we use this

approach and justify our conclusions with the development

history.

6 Case Study

To demonstrate the feasibility of our approach, we an-

alyzed the software life-cycle of the open source object-

relational database, PostgreSQL. PostgreSQL is marketed

as an alternative to commercial database systems such as

MSSQL and DB2, as well as a more robust option to other

open source systems like MySQL and Firebird. Our analy-

sis of PostgreSQL begins with its first formal release, ver-

sion 6.0. Previous to that release, PostgreSQL was referred

to as Ingres.

In evaluating PostgreSQL, we chose to use periods of

three months to find canonical changes. We experimented

with various other time frames and found that a time frame

shorter than 3 months (1-2 months) produced similar re-

sults, whereas a longer time frame did not provide sufficient

information to draw conclusions about the progress of the

development of PostgreSQL.

Proceedings of the 14th IEEE International Conference on Program Comprehension (ICPC’06)
0-7695-2601-2/06 $20.00 © 2006 IEEE

Given the list of all changes, in the form of the set of all

CVS source code commits for a given time period, we com-

puted the canonical changes. This is the set of changes such

that the individual changes in that set are most dissimilar to

one another, and also have the property that they are very

similar to changes not in the set. In other words, the canon-

ical changes for a period is the smallest set of changes that

best characterizes all the changes of that period.

Figure 2. Number of Identified Change Clus-
ters of PostgreSQL by Period

Figure 2 shows the number of change clusters that our

approach identified for each development period in the life-

time of PostgreSQL. The figure lists the major release num-

ber for each corresponding period. The number of change

clusters reveals the varying amount of change activities dur-

ing each time period. We did not restrict our canonical

solver to return a specific number of canonical changes. In-

stead, the returned canonical changes that form the basis of

the change clusters are due to the inherent relationship be-

tween changes during the development process during each

time period.

To uncover any overall global trends in our results, we

fitted linear and polynomial (of degree 6) trendlines to our

data. The linear trendline (dotted line) shows a slight down-

ward trend. This indicates that PostgreSQL’s development

activity has remained active over time at a reasonably con-

stant rate. Examining Figure 2, we note that the polynomial

trendline (solid line) shows a similar trend except toward the

7.2 release where we see a decline in the number of canoni-

cal clusters. We believe this decline is likely due to missing

change data for the 22nd period.

In addition to the global trends, we noticed in Figure 2 a

significant rise in the number of change clusters in several

periods following a release when compared to the prior pe-

riod. Moreover we note a decline in the number of change

clusters in a period preceding a release when compared to

the prior period’s. Between releases 7.0 and 7.1 or 7.1 and

7.2, we can see an increase in the number of change clus-

ters as development commences and we note a decline as

development for the release winds down. This is proba-

bly because the development of the system began with a

focus on several new areas, and as the release approaches,

the focus shifts to fewer and fewer areas. Intuitively, this

is expected since as goals for the release are accomplished,

they are no longer worked on. As a release approaches you

do not add any new work, what is commonly known as a

“feature freeze”.

In order to examine the stability of development we

can consider the number of new change clusters introduced

from one period to the next. This indicates a time continu-

ous progression of development; that is, how often the focus

of development changes. It is desirable that a reasonable

balance is achieved between working on old activities and

pursuing new activities. This balance would ensure that de-

velopment of a product progresses smoothly with new fea-

tures being added and old features being maintained and

enhanced.

If the development from one period to the next is very

stable, and the change clusters for the two periods do not

differ dramatically, this is a good indicator that the focus of

development between the two periods has not changed sig-

nificantly. However, if the canonical changes differ signifi-

cantly, the focus of development has changed. This could be

due to the introduction of new features in the software sys-

tem, the updating of previous features, or the reimplemen-

tation of previous code. Our goal is to differentiate between

maintenance or enhancement activities, and the introduction

of new features.

Figure 3. Percentage of New Change Clusters
in a Period Relative to the Preceding Period
for PostgreSQL

Figure 3 shows the percentage of new change clusters

in a period relative to the preceding period. Using the

same analysis as the previous figure, we fitted linear and

Proceedings of the 14th IEEE International Conference on Program Comprehension (ICPC’06)
0-7695-2601-2/06 $20.00 © 2006 IEEE

Figure 4. Number of New Change Clusters
Over Time of PostgreSQL

polynomial trendlines. Both trendlines are showing a con-

stant rate with a slight downward trend for the data. This

trend indicates that the development team is working on

new activities/features while continuing work on old activi-

ties/features. Moreover a closer analysis of the data reveals

that for most periods following a release there is a rise in

the percentage of new change clusters. Unfortunately, this

trend is not consistent across all releases. Releases 6.0 and

6.1 are all done within a single period. Furthermore, the

period following release 7.0 exhibits drop in the percent-

age of new change clusters. It is interesting to note that the

periods between releases 6.5 and 7.1 (in particular periods

13-16) exhibit a rather high percentage of new change clus-

ters when compared to the other periods in the lifetime of

PostgreSQL. These few periods with a high percentage of

new change clusters could be attributed to the work done

in the 6.5 release to permit the team to add features more

frequently. The release notes for release 6.5 support our

position:

“This release marks a major step in the develop-
ment team’s mastery of the source code we inher-
ited from Berkeley. You will see we are now easily
adding major features, thanks to the increasing
size and experience of our world-wide develop-
ment team.”

To further corroborate this quote, we examine Figure 2

and note that periods 1 to 7 exhibited a drop in the amount

of change clusters/activities that the PostgreSQL team was

able to work on. Following the work done in release 6.5 the

team was able to work consistently on more change clus-

ters and was able to work on more new change clusters over

time. These findings match well with the problems that the

PostgreSQL team has noted (slower development progress).

Their refactoring work in release 6.5 has helped them ad-

dress this concern well. Clearly, the increase in the number

of developers working on the project could explain some

of the trends that we noticed. Nevertheless we believe that

the larger number of developers is not sufficient to justify

these trends since a brittle code base is likely to suffer many

problems that would slow down the progress of the project.

An increase in the number of developers does not imply im-

proved efficiency in the refactoring process if the code is

fragile.

In order to show conclusively that new features are ac-

tually being implemented or reimplemented (which in the

context of our approach is viewed as a new feature being

implemented with same or similar functionality), we see if

a change cluster is considered new over the entire lifetime

of the software’s development. Similarly to the process of

determining new change clusters relative to the previous pe-

riod, we see whether a change cluster has been represented

in any previous periods.
Figure 4 shows the percentage of new change clusters in

a period relative to all prior periods. The trendlines in the

figure show the following characteristics:

1. There is a downward trend in the addition of new fea-

tures in the PostgreSQL project. This downward trend

of adding new features may indicate the project’s ma-

turity over time as the focus shifts from adding new

features to mainly servicing small enhancements and

bug fixes [23]. The constant rate of work (i.e., change

clusters), shown in Figure 2, indicates that develop-

ment in the project is still continuing at a constant rate

but with development focus shifting into more mainte-

nance and servicing.

2. Examining the polynomial fit (solid line), it appears

that following release 7.0 the work on new change

clusters have slowed down drastically. Consulting the

release notes for the following releases shows that

these releases focused on optimizing the database to

handle large workload and on removing many limita-

tions. To achieve these goals, the releases are likely to

focus more on reworking old features and enhancing

them instead of adding new features.

Once we have the change clusters for a period we can

determine the distribution of changes with respect to the pe-

riod’s clusters. For example in period 3, there are 8 change

clusters. However, it may not be that changes in these clus-

ters are evenly distributed; in fact, it is very unlikely that is

the case. In order to determine the distribution of changes

between the different change clusters, we consider all the

changes of the period and associate each change with it’s

nearest neighbor in the set of canonical changes using the

similarity measure we already computed to determine those

canonical changes. In period 3 we can see that the distribu-

tion of the change clusters is largely in one area (at one-third

of the effort distribution) with the rest of the clusters being

fairly evenly distributed. This measure in actuality is, by

Proceedings of the 14th IEEE International Conference on Program Comprehension (ICPC’06)
0-7695-2601-2/06 $20.00 © 2006 IEEE

proxy, a measure of the effort distribution for the period.

We can see the distribution in Figure 5.

Figure 5. Distribution of Changes in Period 3
Between Identified Change Clusters of Post-
greSQL

Using this information we can determine how much

change occurred in a specific area. Rather than simply stat-

ing that there were 8 change clusters, we can actually state

how much of the overall changes were represented in each

of these 8 clusters. In the example of period 3, we can fur-

ther characterize each of these clusters as new and old de-

velopment using the number of new canonical changes over

time. The last 4 items in the graph can be characterized as

old (maintenance) and the first 4 as new development. This

provides a more refined view of the status of development

for a given period.

7 Related Work

The work presented in this paper analyzes historical

project information stored in software repositories, such as

source control repositories, to derive a characterization for

different time periods throughout the lifetime of a software

project. We now briefly overview previous work and con-

trast our approach to such work.

Works by Lehman [14], Godfrey [16], and Gall et al. [9]

measure global software metrics such as LOC and number

of changes to recognize areas and periods of rapid and slow

evolution. Such approaches cannot recognize how periods

relate to each other or what are the main work activities

within specific periods. For example, even though a time

period had thousands of changes all the changes could be

mapped to mainly developing a single feature or a limited

set of features.

Hassan and Holt [12] propose measuring the spread

of changes over the files or subsystems of software sys-

tem. Their intuition is that periods with changes spread

out through the source code are good indicators of devel-

opers working on a large number of activities concurrently

(e.g., bugs or features) in the same time. In contrast to our

presented approach, their approach does not give actual ex-

amples of the activities. Their approach simply states that

too much work is being done but it cannot give example

changes that characterize the different work activities. Fur-

thermore, they do not investigate how work activities within

different periods relate to each other, i.e., whether work ac-

tivities during a time period represent continuation of old

work activities or if they represent new activities.

Lientz et al. [15] present the results of a survey that de-

scribes the amount of effort in large software projects allo-

cated to the different maintenance categories such as per-

fective, adaptive, etc. Recent work by Schach et al. [26]

explored the results of the survey through manual analysis

of source control data. The presented approach can auto-

matically compare the work activities across time periods

in the lifetime of a software project. The approach can de-

termine whether activities are new development or continu-

ation of old work. The old work activities could be consid-

ered as maintenance activities. An automated lexical analy-

sis, such as the one used by Mockus and Votta [19], can be

employed to divide modifications into different categories

(such as adaptive maintenance or inspection maintenance)

based on the content of the detailed message attached to a

modification.

Barry et al. [1], and Xing and Stroulia [30] character-

ize different time periods within a project’s lifetime using a

combination of characteristics about the spread of changes,

the amount of changes, and the effect of the changes on

the dependencies structure. In contrast to our approach, the

aforementioned work simply describes a single major de-

velopment focus during a time period such as rapid devel-

opment, restructuring, etc. The aforementioned work is not

able to identify the few main work activities in a time period

such as work to implement particular features.

8 Future work

We would like to analyze more software systems using

our approach in order to find more general trends. This will

not only demonstrate further that our approach is effective

in objectively characterizing the evolution of a software sys-

tem, but also may reveal trends that we did not expect to see.

Considering systems with varying longevity would allow

us to determine what trends are typical for different length

projects.

The canonical set framework allows for the weighting

of changes by providing a saliency measure. In this work,

we assumed that all changes were as important as all other

Proceedings of the 14th IEEE International Conference on Program Comprehension (ICPC’06)
0-7695-2601-2/06 $20.00 © 2006 IEEE

changes, which is more than likely not the case. In our

future work we hope to correlate features with change se-

quences and provide a measure of saliency such that it is

higher for features that have either been part of the system

for a longer period of time, or are more critical to the sys-

tem, or have been updated more frequently.

In addition, we would also like to examine systems based

on varying period lengths. Rather than partitioning periods,

as we did in this paper, to a fixed time frame, we would like

to partition the life-cycle of a system into varied lengths.

This would allow a manager to answer questions such as:

“how has the development of my system evolved in the past

2 months as compared to the previous year?”

In terms of planning for future development, we would

like to be able to provide managers with information so that

they can anticipate not only the type of development, which

would be useful, but the areas in which development will

occur. This could be achieved by recognizing previous pat-

terns of canonical changes, which would allow managers to

assign tasks more appropriately to developers based on the

upcoming needs of development on the system.

Lastly, it would be beneficial to testing teams for con-

sider bug fixes and bug counts in our analysis. If we could

correlate the introduction of new code and new bugs, as well

as when maintenance work is primarily bug fixes, we could

aid managers in assigning work tasks more appropriately.

9 Conclusions

A good understanding of the progress of code change ac-

tivities in large software projects is essential to ensure that

managers can monitor the progress of a project and plan for

future activities. In this paper we presented an approach to

characterizing the evolution of software systems and pro-

viding managers with an analysis of change activities.

The approach of using canonical sets not only allows

managers to determine what change activities are being fo-

cused on during a given period, but also provides more in-

formation. Specifically, it provides managers with informa-

tion about the number of areas where changes have been ap-

plied. This allows them to see when the development team

has focused on several activities or just on few. It also shows

managers what those activities are by providing representa-

tive examples of them.

We can also identify when code maintenance or refac-

toring work is being performed as compared to new devel-

opment on the software system. We can then list what de-

velopment occurred and when it occurred. Comparing the

canonical changes of two consecutive periods provides sim-

ilar information that depicts how the focus of development

changes from one period to the next.

Using this information, and a clustering technique, we

are able to show the distribution of changes between identi-

fied change clusters. The number of changes and the num-

ber of change clusters individually show how much change

occurred in a system and what the change areas were, re-

spectively. However, neither or them can depict the distri-

bution of change activity. By applying a clustering tech-

nique we are able to show the distribution of changes with

respect to individual change clusters, which can be inferred

as a distribution of effort.

The advantages of using canonical sets to depict software

evolution lie in its ability to define the number of change

clusters as well as represent those change clusters by ex-

amples. It does not rely on the frequency of commits, as

a histogram would, but provides the canonical changes by

exploiting the structure of the changes made during a time

period. It is capable of accurately depicting the change ac-

tivity of a period without being skewed by the commit fre-

quency of developers. Our approach not only avoids human

intervention with its objectivity but also quantitatively char-

acterizes trends in software systems that would otherwise

require an in-depth knowledge of the entire life-cycle of the

system.

References

[1] E. J. Barry, C. F. Kemere, and S. A. Slaughter. On the uni-

formity of software evolution patterns. In Proceedings of
the 25th International Conference on Software Engineering,

pages 106–113, Portland, Oregon, May 2003.
[2] A. Bauer and M. Pizka. The contribution of free software

to software evolution. In Proceedings of the 6th IEEE In-
ternational Workshop on Principles of Software Evolution,

Helsinki, Finland, Sept. 2003.
[3] D. Cubranic and G. C. Murphy. Hipikat: Recommending

pertinent software development artifacts. In Proceedings of
the 25th International Conference on Software Engineering,

pages 408–419, Portland, Oregon, May 2003.
[4] CVS - Concurrent Versions System. Available online at

http://www.cvshome.org.
[5] T. Denton, J. Abrahamson, and A. Shokoufandeh. Approx-

imation of canonical sets and their application to 2d view

simplification. In IEEE Conference on Computer Vision and
Pattern Recognition, Washington, DC, June 2004.

[6] T. Denton, M. F. Demirci, J. Abrahamson, A. Shokoufandeh,

and S. Dickinson. Bounded canonical sets and their applica-

tions to view indexing. In 17th IAPR International Confer-
ence on Pattern Recognition, Cambridge, United Kingdom,

August 2004.
[7] K. Fogel. Open Source Development with CVS. Coriolos

Open Press, Scottsdale, AZ, 1999.
[8] M. Fowler. Refactoring: Improving the Design of Exisiting

Code. Addison Wesely Longman, Boston, USA, 1999.
[9] H. Gall, M. Jazayeri, and J. Krajewski. Cvs release history

data for detecting logical couplings. In Proceedings of the
6th IEEE International Workshop on Principles of Software
Evolution, Helsinki, Finland, Sept. 2003.

Proceedings of the 14th IEEE International Conference on Program Comprehension (ICPC’06)
0-7695-2601-2/06 $20.00 © 2006 IEEE

[10] M. R. Gary and D. S. Johnson. Computers and Intractabil-
ity: A Guide to the Theory of NP-completeness. Freeman,

San Francisco, 1979. (ND2,SR1).
[11] M. X. Goemans and D. P. Williamson. .878-approximation

algorithms for MAX CUT and MAX 2SAT. In Twenty-sixth
Annual ACM Symposium on Theory of Computing, pages

422–431, New York, 1994.
[12] A. E. Hassan and R. C. Holt. The Chaos of Software Devel-

opment. In Proceedings of the 6th IEEE International Work-
shop on Principles of Software Evolution, Helsinki, Finland,

Sept. 2003.
[13] A. E. Hassan and R. C. Holt. C-REX: An Evolutionary Code

Extractor for C. May 2004. Submitted for Publication.
[14] M. M. Lehman, J. F. Ramil, P. D. Wernick, D. E. Perry, and

W. M. Turski. Metrics and laws of software evolution the

nineties view. In Proceedings of the 4th International Soft-
ware Metrics Symposium, Albuquerque, NM, 1997.

[15] B. P. Lientz, E. B. Swanson, and G. E. Tompkins. Charac-

teristics of Application Software Maintenance. Communi-
cations of the ACM, 21(6):466–471, 1978.

[16] Michael W. Godfrey and Qiang Tu. Evolution in open source

software: A case study. In Proceedings of the 16th Inter-
national Conference on Software Maintenance, pages 131–

142, San Jose, California, Oct. 2000.
[17] M. Mitchell. GCC 3.0 State of the Source. In 4th Annual

Linux Showcase and Conference, Atlanta, Georgia, Oct.

2000.
[18] A. Mockus, R. T. Fielding, and J. D. Herbsleb. A case study

of open source software development: the apache server. In

Proceedings of the 22nd International Conference on Soft-
ware Engineering, pages 263–272, Limerick, Ireland, June

2000. ACM Press.
[19] A. Mockus and L. G. Votta. Identifying reasons for software

change using historic databases. In Proceedings of the 16th
International Conference on Software Maintenance, pages

120–130, San Jose, California, Oct. 2000.
[20] J. Novatnack, T. Denton, A. Shokoufandeh, and L. Bretzner.

Stable bounded canonical sets and image matching. In En-

ergy Minimization Methods in Computer Vision and Pattern
Recognition, EMMCVPR 2005, November 2005.

[21] D. L. Parnas. On the criteria to be used in decomposing

systems into modules.
[22] Perforce - The Fastest Software Configuration Management

System. Available online at http://www.perforce.
com.

[23] V. T. Rajlich and K. H. Bennett. A staged model for the

software life cycle. Computer, 33(7):66–71, July 2000.
[24] M. J. Rochkind. The source code control system. IEEE

Transactions on Software Engineering, 1(4):364–370, 1975.
[25] M. Salah, T. Denton, S. Mancoridis, A. Shokoufandeh, and

F. I. Vokolos. Scenariographer: A tool for reverse engi-

neering class usage scenarios from method invocation se-

quences. In Proceedings of the 21st International Confer-
ence on Software Maintenance, pages 155–164. IEEE Com-

puter Society, 2005.
[26] S. R. Schach, B. Jin, L. Yu, G. Z. Heller, and J. Offutt. De-

termining the Distribution of Maintenance Categories: Sur-

vey versus Measurement. Empirical Software Engineering,

8(4):351–365, Dec. 2003.
[27] W. F. Tichy. RCS - a system for version control. Software -

Practice and Experience, 15(7):637–654, 1985.
[28] K. C. Toh, M. J. Todd, and R. Tutuncu. SDPT3 — a Matlab

software package for semidefinite programming. Optimiza-
tion Methods and Software, 11:545–581, 1999.

[29] Z. Weinberg. A Maintenance Programmer’s View of GCC.

In First Annual GCC Developers’ Summit, Ottawa, Canada,

May 2003.
[30] Z. Xing and E. Stroulia. Understanding Phases and Styles

of Object-Oriented Systems Evolution. pages 242–251,

Chicago, USA, Sept. 2004.
[31] Y. Ye and K. Kishida. Toward an understanding of the mo-

tivation of open source software developers. In Proceed-
ings of the 22nd International Conference on Software Engi-
neering, pages 419–429, Portland, Oregon, May 2003. ACM

Press.

Proceedings of the 14th IEEE International Conference on Program Comprehension (ICPC’06)
0-7695-2601-2/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

