
Empir Software Eng (2013) 18:375–431
DOI 10.1007/s10664-012-9205-0

Studying the impact of social interactions
on software quality

Nicolas Bettenburg · Ahmed E. Hassan

Published online: 28 April 2012
© Springer Science+Business Media, LLC 2012
Editor: Giulio Antoniol and Keith Gallagher

Abstract Correcting software defects accounts for a significant amount of resources
in a software project. To make best use of testing efforts, researchers have studied
statistical models to predict in which parts of a software system future defects are
likely to occur. By studying the mathematical relations between predictor variables
used in these models, researchers can form an increased understanding of the im-
portant connections between development activities and software quality. Predictor
variables used in past top-performing models are largely based on source code-
oriented metrics, such as lines of code or number of changes. However, source code
is the end product of numerous interlaced and collaborative activities carried out
by developers. Traces of such activities can be found in the various repositories
used to manage development efforts. In this paper, we develop statistical models
to study the impact of social interactions in a software project on software quality.
These models use predictor variables based on social information mined from the
issue tracking and version control repositories of two large open-source software
projects. The results of our case studies demonstrate the impact of metrics from
four different dimensions of social interaction on post-release defects. Our findings
show that statistical models based on social information have a similar degree of
explanatory power as traditional models. Furthermore, our results demonstrate that
social information does not substitute, but rather augments traditional source code-
based metrics used in defect prediction models.

Keywords Human factors · Software evolution · Metrics/measurement ·
Software quality assurance

N. Bettenburg (B) · A. E. Hassan
Software Analysis and Intelligence Lab (SAIL), Queen’s University, School of Computing, 156,
Barrie Street, Kingston, ON K7L 3N6, Canada
e-mail: nicbet@cs.queensu.ca

A. E. Hassan
e-mail: ahmed@cs.queensu.ca

376 Empir Software Eng (2013) 18:375–431

1 Introduction

In the foreword to “Why programs fail” (Zeller 2009), James Larus, director of
Microsoft’s Customer Care Framework (CCF) project notes: “If software developers
were angels, debugging would be unnecessary[...]” as an homage to the famous words
by James Madison. With this line, Larus expresses a fundamental software engineer-
ing problem that sparks enormous research efforts: software contains defects, and
fixing these defects is very costly—even more so, if they are discovered after the
software has shipped.

To reduce maintenance costs, researchers have extensively studied two core
areas in empirical software engineering: understanding and minimizing the cause of
defects and building effective systems to predict where defects are likely to occur
in the software system (Bird et al. 2009). Both research areas are intertwined:
knowledge gained from understanding root causes can help in building better
predictors (Schröter et al. 2006), and at the same time the study of prediction
models provides cues for understanding the causes of defects, such as complex code
change processes (Hassan 2009). Past work in defect prediction makes extensive
use of product and process metrics (Purao and Vaishnavi 2003), obtained from the
source code of a software system, such as code complexity (McCabe 1976), code
change metrics (Munson and Elbaum 1998), or inter-dependencies of elements in
the code (Nagappan and Ball 2007).

However, source code is the end product of a variety of collaborative activities
carried out by the developers of a software. Lately, researchers started to realize
that the intricacies of these activities such as social networks (Wolf et al. 2009), work
dependencies (Cataldo et al. 2009) and daily work routines (Śliwerski et al. 2005)
impact the quality of a software product. Traces of these activities can be found in the
repositories that developers use on a day to day basis, such as version archives, issue
tracking systems, and email communication archives. In this study we investigate how
we can use information about the social interactions in the community for defect
modeling, and set out to study their relative impact on software quality. In particular,
we focus on social information extracted from discussions on issues reports, which
are stored in issue tracking systems. We use statistical models to establish and
inspect mathematical dependencies between defects and social interaction metrics
– an approach that has been successfully used in previous research to study the
relation between source code metrics and defects (Cataldo et al. 2009; Hassan 2009;
Nagappan and Ball 2005, 2007; Schröter et al. 2006; Zimmermann et al. 2007). In
particular, we set out to study the following relations:

(1) The relationship between the social structures, extracted from discussions in
issue tracking systems and software quality, as expressed through post-release
defects.

(2) The relationship between the contents and characteristics of communication,
measured through metrics computed from issue tracking system discussions,
and software quality, as expressed through post-release defects.

(3) The relationship between workflow in the community, measured through activ-
ities in the issue tracking systems, and software quality, as expressed through
post-release defects.

Empir Software Eng (2013) 18:375–431 377

Through case studies on the ECLIPSE and Mozilla FIREFOX software systems,
we find that such relationships exist and that they can be used to create prediction
models with explanatory power similar to traditional models based on product and
process metrics. In addition, we find that a combination of our model based on social
interaction metrics and a traditional model based on product and process metrics,
yields higher explanatory power than each of the models taken separately.

In particular, our work makes the following contributions to the research field.
(1) We distill those metrics of social interaction, that are connected to software
quality, and describe their effect through odds ratios. (2) We demonstrate that
social information metrics complement traditional, source code based metrics, and
investigate which of the social information metrics could be valuable for defect
modelling.

The rest of this paper is organized as follows. Section 2 describes the set of social
information metrics we use throughout this study. Section 3 presents the general
design of our case studies, together with a discussion of the statistical (regression)
models and the methods used to describe their performance.

Section 4 presents our case study on the ECLIPSE software system, and Section 5
presents our case study on the Mozilla FIREFOX software system. We discuss our
findings of both case studies in more detail in Section 6, and perform a comparison
of our observations across both projects. In Section 7 we investigate the possibility
of combining models based on social information metrics with traditional models
based on source code metrics. We close our work by discussing related research
work (Section 8), possible threats to the validity of our study (Section 9), and our
conclusions (Section 10).

This work extends our original study published at the 2010 International Con-
ference on Software Comprehension (ICPC) as follows. (1) We have updated our
analysis to better understand the impact of social interaction metrics on defects. (2)
We have added a new case study on Mozilla FIREFOX. (3) We analyzed multiple
releases of each software project, and (4) We have prepared publicly available
datasets and scripts to help repeatability of our study (Appendix A).

2 Social Interaction Metrics

In this section we describe the four dimensions of social interaction metrics that we
use in our statistical models. To help our readers follow along in the text and increase
the readability of this work, we present an overview of these metrics in Table 1. For
each metric, we briefly motivate its inclusion and outline our approach to measure it.
Our social interaction metrics are determined from traces of activity that developers
and users leave behind in the issue tracking system. Hence we calculate each metric
on a per-issue report level.

As we will later study the relation between social interaction metrics and software
quality on a per-file level, we need to aggregate values across all issue reports
associated with a file. Our default method of aggregation is to take the average.
However, for some metric we are interested in their variability and for these

378 Empir Software Eng (2013) 18:375–431

Table 1 Reference of the measures of social interaction used in this study

Measure Description

Baseline model
CHURN Code churn is defined as the number of lines added, modified, and

deleted between two consecutive versions of a source code file.
Discussion contents

NSOURCE Number of source code regions found in a discussion by the
infoZilla tool.

NSCOM Average cyclomatic complexity of the code found in a discussion.
NPATCH Number of patches found in a discussion by the infoZilla tool.
PATCHS Number of files modified by a patch.
NTRACE Number of stack traces found in a discussion by the infoZilla tool.
TRACES Size of a stack traces in number of stack frames.
NLINK Number of URL links to resources outside the discussion.

Social structures
NPART Number of unique participants in a discussion.
NUSERS Number of unique participants in a discussion, who are users.
NDEVS Number of unique participants in a discussion, who are developers.
CON1-3 Unique login names of the three most experienced developers

participating in a discussion.
SNACENT The degree to which each participant talks to other participants,

captured through a measure of clonesness-centrality.
Communication dynamics

NMSG Total number of messages exchanged in a discussion.
DLEN Number of words in a discussion.
DLENE Variability in the number of words across all discussions on

issue reports associated with a source code file.
REPLY Mean reply time between the messages of a discussion.
REPLYE Entropy of the mean reply time between discussions on

issue reports associated with a source code file.
INT Interestingness of an issue report, captured through the size

of notification list.
INTE Variability in the interestingness across all issue reports

associated with a source code file.
Workflow

WA Workflow activity recorded for an issue report.
WAE Variability in workflow activity across all issue reports associated

with a source code file.

metrics we will use entropy for aggregation. Entropy is a concept we borrow from
information theory (Shannon 2001). The normalized entropy is defined as:

H(P) = −
n∑

k=1

(pk · logn(pk)) (1)

where pk ≥ 0, ∀k ∈ 1, . . . , n and
∑n

k=1 pk = 1. Normalized entropy is an extension
to Shannon’s classical measure of entropy (Shannon 2001) and allows us to compare
entropy metrics across different distributions. Measures of entropy have been used in
previous research to study the evolution of code changes (Hassan 2009), noting that
when a project is not managed well, or the code change process is not under control,

Empir Software Eng (2013) 18:375–431 379

the system will be in a state of maximum entropy (chaos). Through measures of the
entropy of the social processes surrounding code changes, we are studying whether
this conjecture holds true within our context.

To illustrate normalized entropy, we consider the following example (presented
in Fig. 1). Let mA be a set of measures of the time (in hours) between the submission
of consecutive discussion messages on issue A, and let mB be a set of measures of
the time (in hours) between the submission of consecutive discussion messages on
issue B. Suppose we find that mA = {1.1, 1.2, 1.3, 1.4} and mB = {1.1, 1.2, 4.0, 1.3}.
Both sets of measures are the same, except that for one value: in mB, the third
measure turns out to be 4.0 hours between two messages. After normalization of
measures, we obtain the sets of normalized values m̄A = {0.22, 0.24, 0.26, 0.28} and
m̄B = {0.14, 0.16, 0.17, 0.53}. We can now calculate the normalized entropy for both
sets of measures, as presented in (1), and find that H(m̄A) = 0.9971 and H(m̄B) =
0.8735. In particular, we want to note the following: the set mB contains a larger
variability of measures, but exhibits a lower measure of normalized entropy. In
general, we achieve the maximum value of entropy, if all elements in the set have
equal values; and we achieve minimum entropy, if all except one measure have a value
of zero.

2.1 Dimension One: Discussion Content

In this section, we describe the seven discussion content metrics that we use in our
study. We choose to incorporate metrics on code examples, patches, stack traces and
links found in discussions, to better understand the content of discussions and their
impact. For example, Bird et al. note that technical talk (indicated by the presence
of a larger amount of technical information items) can have a different impact than
regular chitchat (Bird et al. 2008). We use the infoZilla tool (Bettenburg et al.
2008b) to extract technical information items from the textual contents of bug report
discussions.

Fig. 1 Example of entropy: a larger variability in the data leads to a lower measure of normalized
entropy

380 Empir Software Eng (2013) 18:375–431

In a previous study (Bettenburg et al. 2008a), we asked developers of the
ECLIPSE and MOZILLA projects, which of the information inside bug reports is
most helpful for them when working on the reported issues. Among the top answers
were information items like crash reports (in the form of stack traces), source code
examples and patches. As a precise understanding of the underlying defect is crucial
for addressing a reported issue adequately, we conjecture that the presence or
absence of information items in bug reports can possibly influence the quality of
the source code changes carried out under the context of the reported issue. For
example, discussions of test cases can help developers to recover the rationale and
intended correct behaviour of a software system.

2.1.1 Source Code Examples (Amount, Complexity)

Our first metric is the amount of source code (NSOURCE) present in a discussion.
Source code can find its way into an issue report due to several reasons: reporters
point out specific classes and functions they encountered a problem with, or provide
smaller test-cases to exactly illustrate a misbehaviour; developers point users at
locations in the source code they require more information about, and discuss
possible ways to address an issue with peers. In particular, we are measuring the
number of complete code examples, rather than lines of code, since source code
often loses its original formatting when present in discussions. Our infoZilla tool
reports source code examples, as the largest blocks of source code surrounded by
either natural language text, or other structural elements. As the complexity of the
code discussed might be an indicator for the intricacy of the reported problem and
an indicator of future risk, we also compute the complexity of the discussed code
(NSCOM) as a qualitative measure for each of the source code examples., we use
McCabe’s cyclomatic complexity (McCabe 1976), rather than lines of code as our
complexity metric.

Our computation of McCabe complexity is analog to the implementation found in
the open source static code checker PMD1 and is defined as

McCabeComplexity = 1 + count(DecisionPoints, code) (2)

with a decision point being either an if, else, else if, for, while, do, or case
statement in the source code.

2.1.2 Patches (Amount, Filespread)

Our second metric is the amount of patches (NPATCH) provided in the discussions.
Publicly discussed patches provide peer-reviewed solutions to the reported issues.
Multiple patches can either present different solutions to the same problem, solutions
to a variety of less complex subproblems, or be different revisions of the same
solution that has been refined through the discussion. In addition to the amount of

1http://pmd.sourceforge.net/

http://pmd.sourceforge.net/

Empir Software Eng (2013) 18:375–431 381

patches we also record the number of f iles changed by a patch (PATCHS). Through
this metric we capture the spread of a patch. We motivate this choice with the idea
that patches resulting in large or wide-spread changes to the source code might
negatively impact dependent parts of the code (even though they might correctly
fix the reported issues) (Hassan 2009).

2.1.3 Stack Traces (Amount, Stacksize)

Our third metric records the amount of stack traces (NTRACE) provided in the
contents. Information inside stack traces provides helpful information for developers
to narrow down the source of a problem, and are hence valuable for finding and fixing
the root causes of issues rather than addressing their symptoms (Zeller 2009). We use
the number of methods reported in the stack traces as a measure for the size of stack
traces (TRACES).

2.1.4 Links

Our fourth metric of discussion contents records the amount of links (NLINK)
present. Developers and users use URLs to provide cross-references to related issues
and to refer to external additional information that might be relevant to the original
problem. We make no distinction between internal links (e.g., to other issue reports)
and external links (e.g., to third-party websites).

2.2 Dimension Two: Social Structures

In addition to the information obtained from the textual contents of discussions, we
compute a number of metrics to describe the social structures between developers
and users, created through issue report discussions. In the following we describe the
five metrics of social structures used in our study.

2.2.1 Discussion Participants

In order to contribute to the BUGZILLA system, users have to sign in with a username
and password. The username acts as a unique handle for all activity in the issue
tracking system. We conjecture that the total amount of unique participants in
the discussion of an issue report is an indicator of the relative importance of the
reported problem. Our first measure hence counts the number of unique participants
(NPART) in the discussion.

2.2.2 Role

In this study we further categorize participants into two different roles: developers
and users. We consider a participant to be a developer, if he was assigned to fixing
at least one BUGZILLA issue in the past. By measuring the number of unique users
(NUSERS) and the number of unique developers (NDEVS) participating in the
discussions we can distinguish between internal discussions (more developers than
users), external discussions (more users than developers) and balanced discussions
(even amount of developers and users).

382 Empir Software Eng (2013) 18:375–431

2.2.3 Experience

Another social property of participants, orthogonal to their role, is their degree of
experience in the community. In our study, we determine the top three participants
with the highest experience (expressed by the past amount of contributed messages)
for each discussion attached to an issue report. These measures are captured in the
three variables (CON1), (CON2), and (CON3). In particular, each variable CON1,
CON2, and CON3 contains the unique Bugzilla login names of the three developers,
we determined to be the most experienced. The degree of experience of a participant
can influence the development process connected to an issue; for example Guo et al.
show that defects reported by more experienced users have a higher likelihood to get
fixed (Guo et al. 2010).

2.2.4 Centrality

Our last metric of social structure (SNACENT) is taken from the area of social
network analysis, called closeness-centrality. This metric is commonly used in social
network analysis to describe the efficiency of spreading information among a group
of people (Wasserman and Faust 1994). We conjecture, that inefficient relay of
crucial information might have a negative impact on software quality. We measure
closeness-centrality as follows. For each discussion attached to an issue report in
the bug database we first construct a discussion flow graph (Mertsalov et al. 2009).
The discussion flow graph is an undirected graph that has participants as nodes
and contains an edge for every pair of two consecutive messages in the discussion,
connecting both message senders. We express the interconnectedness of nodes
(participants) in the discussion flow graph as a measure of Wasserman and Faust
(1994).

The closeness-centrality CC of each participant in a discussion is the inverse of the
average shortest-path distance dS from the participant in the discussion flow graph
to every other participant in the graph. Figure 2 illustrates an example discussion
and corresponding discussion flow graph. In this example, participant A is connected
to participants B and D directly. Participant C is connected only to participant B,

Fig. 2 Example discussion and
resulting discussion flow graph

DISCUSSION DISCUSSION FLOW GRAPH

Empir Software Eng (2013) 18:375–431 383

and participant E is connected only to participant D. The closeness-centrality for
participant E is

CC(E) =
(

1
4

· (dS(E, A) + dS(E, B) + dS(E, C) + dS(E, D))

)−1

=
(

1
4

· (2 + 3 + 4 + 1)

)−1

= 2
5

Similarly, the closeness-centrality value for participant A is 2
3 , and for both partic-

ipants B and D it is 4
7 . Since closeness-centrality is a per-node measure (one value for

each discussion participant, and one such set of values for each discussion associated
with a particular file), we aggregate the closeness-centrality of all participants in the
discussion into a single value, through normalized entropy. The more participants
are equally able to spread information to everybody else, the higher the normalized
entropy measure will be.

2.3 Dimension Three: Communication Dynamics

In addition to information about discussion content and involved participants, we
attempt to measure discussion activity both quantitatively and qualitatively. In
this context, we refer to communication dynamics as the changing attributes of a
discussion as it unfolds when new discussion activity is added. In the following we
describe the six metrics of communication dynamics, used in our study.

2.3.1 Number of Messages

By their very nature, issues that are complex, not well understood, or controversial
require a greater amount of information exchange relative to simple issues. We cap-
ture this intuition through a measure of the amount of messages (NMSG) exchanged
in a discussion.

2.3.2 Length of Messages

Following the same intuition, we define two additional metrics: first, the number of
words in a discussion (DLEN), and second discussion length entropy (DLENE), as
a proxy to the variability in wordiness in discussions. We consider the “wordiness”
of messages as an indicator for the cognitive complexity of the reported issue and
greater fluctuations of wordiness (resulting in a higher measure of entropy) as an
indicator for possible communication problems.

2.3.3 Reply Time

Cognitive science defines communication as “the sharing of meaning” (Alatis 1993;
D’Este 2004). The absence of communication for an extended period of time, or
distorted communication, is related to misinterpretations and misunderstandings.

384 Empir Software Eng (2013) 18:375–431

In the context of software development, such misinterpretations when carrying out
changes to the source code can be the cause of errors. We capture this idea by
measuring both, the mean reply time between messages (REPLY), and the reply time
entropy as a proxy to the variability in reply times (REPLYE) in discussions. We
conjecture that a higher variation in reply times (e.g., a long pause in an otherwise
fast-paced discussion) captures temporal anomalies in the discussion flow that might
indicate potential problems, and thus possibly post-release defects.

2.3.4 Interestingness

The BUGZILLA system allows users to get automatic notifications when an issue
report is changed, via so-called “CC-lists”. We use a measure of the number of people
who signed up for such notifications as an indicator of the interestingness (INT) of an
issue report. This measure is different from the number of participants, since users
of the issue tracking system can be on the notification list, while not contributing
to the discussion for an issue report. In addition we capture the variability of
interestingness in a measure of interestingness entropy (INTE). We conjecture that a
larger variability of interestingness (e.g., a rather uninteresting file suddenly becomes
very interesting, versus a file that is always rather uninteresting), might thus be an
potential indicator for post-release defects.

2.4 Dimension Four: Workflow

Issue reports represent work items for developers and follow a set of states from
creation until closure (Anvik et al. 2006) and transitions between these states
create a workflow. Any workflow activity associated with each report is recorded
in the BUGZILLA system. We conjecture that a high workflow activity indicates
anomalies (Guo et al. 2011; Jeong et al. 2009; Shihab et al. 2010a), such as re-
assignment of the work item to another developer, or re-opening reports that were
previously marked as completed. To capture workflow activities, we measure the
total amount of workf low activity (WA) associated with each issue report, as well as
the entropy of workf low activity (WAE) to capture variability in the process.

3 Study Design

Our analysis uses statistical models to investigate the relations between social infor-
mation and software quality. We do so by exploring the statistical relations between
the failure proneness of files and the social information metrics captured from issue
reports associated with these files. In this section we describe the design of our study,
our model-building process and the results of our comparative analysis between
the model based on social information metrics and classical models using code-
based product and process metrics. Following previous work in defect prediction
(Nagappan and Ball 2007), we divide the collection of measurements into two distinct
phases. For a period of 6 months before a release of the software we capture the
social interaction metrics described in Section 2 for each file that has at least one issue
report associated with it. We then measure the amount of defects (POST) reported
for each file for the next 6 months following the release. For both case studies, we
choose to perform our measures for periods of 6 months surrounding the releases

Empir Software Eng (2013) 18:375–431 385

of Eclipse 3.0, Eclipse 3.1, and Eclipse 3.2, as well as Mozilla FIREFOX
1.5, Mozilla FIREFOX 2.0, and Mozilla FIREFOX 3.0. From the measurements
obtained for the corresponding time periods, we create regression models that set
the occurence of post-release defects into relation of our pre-release measures. The
complete regression model has the following form:

Prob(Postrelease Def ects) = θ · CodeChurn

+
∑

i

αi · DiscussionContentsMetrici

+
∑

j

β j · SocialStructuresMetric j

+
∑

k

γk · CommunicationDynamicsMetrick

+
∑

l

δl · WorkflowMetricl + ε (3)

Here, ε is called the intercept of the model, and θ, αi, β j, γk, and δl are called
the regression coef f icients. Based on this model, we will investigate the statistical
relationships between the social interaction metrics of each dimension, which are
used as the regression variables in the model, and the probability of post release
defects, which is used as the dependent variable in the model. We start with a pre-
liminary analysis of the regression variables using descriptive statistics, to illustrate
general properties of the collected metrics. Next, we perform a correlation analysis to
consider possible inter-relations between measurements. We then construct several
logistic regression models to investigate the relative impact of each of the four
dimensions of social interactions metrics on the risk of post-release defects. Our
approach is similar to the work by Cataldo et al. (2009) and Mockus et al. (2005).

We follow a hierarchical modelling approach when creating all our models: we
start out with a baseline model that uses code churn, a classical defect predictor,
as the regression variable. We then build subsequent models to which we step-by-
step add our content, structure, communication dynamics and workflow metrics, and
report for each model the explanatory power, χ2, of the model. The χ2 statistic can
be thought of as a measure of “goodness of contribution from the set of regression
variables” (Cohen 2003). In addition, we report for each model Mi the percentage of
deviance explained by the model, which is a quality of fit statistic and is defined as

D(Mi) = −2 · LL(Mi) (4)

with LL(Mi) denoting the log-likelihood of the model, and the deviance explained as
a ratio between D(M0) = D(Def ects ∼ Intercept) and D(Mi). This statistic is similar
to the coefficient of determination, R2, and describes the variability in the data set
the model accounts for (Steel and Torrie 1960), and thus describes how well the
model, when used for prediction, describes future outcomes. Our choice of χ2 over
R2 as a measure of goodness is rooted in two observations. First, in logistic regression
models, R2 needs to be approximated through a pseudo-R2 measure, whereas χ2

is directly accessible. Second, as we add more regression variables to our logistic

386 Empir Software Eng (2013) 18:375–431

regression models through the hierarchical approach taken, the pseudo-R2 measure
increases, even if the added variables add no value to the regression models.

Overall, a hierarchical modelling approach has the advantage over a step-wise
modelling approach that it minimizes artificial inflation of errors, and thus over-
fitting (Cataldo et al. 2009). To determine the contribution of each dimension
of social metrics to our model, we test for each subsequent model whether the
difference in explanatory power from the previous model is statistically significant,
and present the corresponding p-level.

To ease readability and interpretability of our results, we present the odds ra-
tios (Edwards 1963) of each regression coefficient, rather than the raw β-coefficients.
For a presentation of the β-coefficients of each model, we refer our reader to
Appendix B. Logistic regression models express regression coefficients as the log
of odds, and the relationship between odds ratios (OR) and regression coefficients
(β) is expressed through:

ORi = eβi and βi = log(ORi)

An odds ratio greater than one indicates a positive relation between the depen-
dent variable (risk of post-release defects) and the independent variables (social
interaction metrics), whereas an odds ratio between zero and one indicates a negative
relation. As we are working in a log-transformed space, the odds-ratios have to be in-
terpreted accordingly: a single unit change in the log-transformed space corresponds
to a change from 1 to 2.71 (= e1) units in the untransformed space.

As a word of warning we want to note that odds ratios should not be compared
directly. Odds ratios describe the effect of a one-unit increase of the regression
variable on post-release defects, while keeping every other regression variable
constant. However, since regression variables attain different actual values in both
projects their relative effects might be different across projects. As an example
consider the following imaginary regression variable X. If we would find that X has
an odds ratio of 1.5 in ECLIPSE, but an odds ratio of 2.0 in FIREFOX, one might be
tempted to argue that X has a larger effect on defects in FIREFOX than in ECLIPSE.
Yet, it is possible that X only attains actual values between 0.1 and 0.5 in FIREFOX,
whereas it could attain actual values between 1.0 and 2.0 in ECLIPSE, thus the true
effect of X on defects is considerably larger for ECLIPSE than FIREFOX—despite
the smaller odds ratio!

4 Case Study One: Eclipse IDE

4.1 Data Collection

For our case study on the ECLIPSE project, we used two main sources of available
data for ECLIPSE. First, we obtained a copy of the project’s BUGZILLA database.
This database collects modification requests that are submitted electronically by a
reporter. These requests are commonly referred to as “bug reports”. However, we
find this term misleading as not all reported issues are defects (Antoniol et al. 2008)
and for the remainder of this paper we will refer to bug reports as “issue reports”.
Every report contains a variety of supporting meta-information such as a unique
identification number, the software version, operating system, or the reporter’s

Empir Software Eng (2013) 18:375–431 387

perceived importance. In addition, entries contain a short one-line summary of the
issue at hand, followed by a more elaborate description. After submission, entries
are discussed in more detail between developers and users, who provide further
comments. In our data, we treat the initial description written by the reporter as
the first message, starting a discussion. Overall, we collected a total of 300,000 issues
submitted to the BUGZILLA system between October 2001 and January 2010.

The second data source we use is the source code archive of the ECLIPSE project.
We obtained a snapshot of the CVS software repository, which contains the project’s
source code, as well as all the information about past changes that have been carried
out by developers. To record which files were changed together in the form of a
transaction, we perform a grouping of single change records using a sliding window
approach (Śliwerski et al. 2005). Overall, we collected 977,716 changes (accounting
for 224,643 transactions) carried out between October 2001 and December 2009.

In order to link information from both repositories together, we automatically
inspect the transaction messages to identify pointers to issue reports. Each number
mentioned in a transaction message is treated as a potential link to an entry in the
bug database. Our algorithm initially assigns low trust to each potential link, but this
trust increases when we find additional clues of the link’s validity, such as keywords
like “bug” or “fix”, or common patterns used to mark references like “#” followed by
a number. This approach was used in previous research (Fischer et al. 2003; Schröter
et al. 2006; Śliwerski et al. 2005; Čubranić and Murphy 2003) with high success.
To further increase the quality of links, we incorporated the improvements by
Bird et al. (2009). Through these links we can then associate issue reports with files.
Overall, we were able to establish 67,705 such links.

We used these links to compute social interaction metrics for the 6 months
periods before the three major releases of ECLIPSE 3.0 (released June 21st, 2004),
ECLIPSE 3.1 (released June 28th, 2005), and ECLIPSE 3.2 (released June 30th,
2006), and to count the amount of post-release defects for the 6 month periods after
each release. To help our reader following along with our case study, we first present
a detailed analysis and interpretation of our statistical models for ECLIPSE 3.0,
followed by a discussion and comparison of models for releases 3.1 and 3.2 at the
end of the section.

4.2 Preliminary Analysis of Social Interaction Measures for ECLIPSE 3.0

Our four dimensions of social interaction metrics (content, structure, dynamics,
and workflow) represent different characteristics of collaborative activity on issues.
While content metrics are more explicit in capturing the information exchanged
between developers and users, our metrics of social structures are more implicit
and capture the latent relationships and roles of stakeholders. Table 2 presents a
summary of our metrics in the form of descriptive statistics.

Due to a relatively high amount of skew, we apply a standard log transformation
to each social interaction measurement to even out the skewing effects during
modelling (Bland and Altman 1996). Figure 3 summarizes the pairwise correlations
between our 20 regression variables and our dependent variable in a correlo-
gram visualization (Friendly 2002). A correlogram reports for each unique pair of
variables the strength of the correlation as a colour-coded field (red for positive

388 Empir Software Eng (2013) 18:375–431

Table 2 Descriptive statistics of social interaction measures for ECLIPSE 3.0

Mean SD Min Max Skew

POST 1.16 2.28 0.00 35.00 5.00
NSOURCE 0.86 2.48 0.00 48.00 7.14
NSCOM 0.27 0.49 0.00 5.00 2.77
NPATCH 0.02 0.24 0.00 5.00 17.17
PATCHS 0.01 0.11 0.00 3.00 13.26
NTRACE 0.14 0.44 0.00 9.00 7.82
TRACES 3.56 10.73 0.00 175.00 5.04
NLINK 0.20 0.91 0.00 8.00 7.02
NPART 3.61 3.89 1.00 40.00 7.48
NDEVS 2.94 1.46 1.00 12.00 2.78
NUSERS 0.67 2.81 0.00 28.00 8.44
SNACENT 0.19 0.07 0.00 0.51 0.43
NMSG 7.32 5.92 2.00 67.00 3.13
REPLY 122.32 206.99 0.00 3239.00 5.17
REPLYE 0.10 0.09 0.00 1.00 1.29
DLEN 337.00 441.75 2.00 6259.00 4.60
DLENE 0.23 0.10 0.00 1.00 0.08
INT 3.80 8.42 0.00 55.00 4.94
INTE 0.14 0.26 0.00 1.00 1.74
WA 9.33 6.36 0.00 49.00 1.68
WAE 0.17 0.19 0.00 1.00 0.65

1.0
0.5
0.0
−0.5
−1.0

Fig. 3 Pairwise correlations of social interaction metrics in ECLIPSE 3.0. The strength of corre-
lations is indicated by f ill intensities; negative correlations are marked with a dashed outline. The
row labeled “post” refers to post-release defects. Stars denote the p-level as follows: * p < 0.05,
** p < 0.01, *** p < 0.001

Empir Software Eng (2013) 18:375–431 389

correlation, blue for negative correlation) and the p-level at which the correlation is
significant. This visualization technique allows us to identify “hotspots” that need our
attention.

We identify a number of intercorrelations between metrics from different dimen-
sions in our dataset that could pose problems in our statistical modelling. For exam-
ple, the measure of interestingness (INT) has a moderate to high correlation with
our measures for number of users (NUSERS), number of participants (NPART),
number of developers (NDEV), and number of links (NLINK). These correlations
are statistically significant at p < 0.001. The first correlation between interestingness
(INT) and the number of participants (NPART) stems from a default setting in
the ECLIPSE issue tracking system, which puts contributors automatically on a
notification list for any updates to the issue. Some of the observed correlations can
be explained by a certain inherent amount of redundancy in the collected data.
For example, the number of participants (NPART) is highly correlated with the
number of users (NUSERS) and number of developers (NDEVS). However, our
motivation for incorporating such redundancy is to investigate whether splitting up
the information into more specialized representations helps to improve our model.
The same intuition holds for the measure of centrality (SNACENT).

Since we observe a substantial number of high correlations among regression
variables, we have to examine potential issues due to multi-collinearity among the
variables. Even though the reliability of the statistical model as a whole is not affected
by multi-collinearity issues, strong correlations among independent variables often
leads to an error in estimates of the regression coefficients that we later use to
investigate the relative impact of each variable on post-release defects. One widely
adopted approach to reducing multi-collinearity is Principal Component Analysis
(PCA). However, in the context of our research goal, PCA is a poor choice due
to a disadvantageous side-effect of the approach (Shihab et al. 2010b). The result
of PCA is a new set of regression variables, or principal components, which are
linear combinations of all the input variables. As a result, we can not analyze the
effects of the original regression variables anymore, which is the very purpose of
this study. As an alternative way to address the problem of multi-collinearity, we
perform a stepwise refinement of the set of variables we use through measuring
the variance inflation factors for each variable. Variance Inflation Factors (VIF)
are widely used to measure the degree of multi-collinearity between variables in
regression models (Kutner et al. 2004).

Since the cut-off value for variance inflation factor analysis is a heavily disputed
topic throughout statistical literature, we decided to follow the example by Kutner
et al. 2004, and remove those variables from the model that have a variance inflation
factor greater than 10. We start our analysis with a regression model that contains
all our variables. The VIFs for this model are presented in Table 3, Model 1. We
observe two variables that have a VIF greater than 10. We remove the highest one
(NMSG) from the regression model and recompute the VIFs with the reduced set of
variables. The resulting model, (Model 2 in Table 3) contains only one more variable
with a VIF larger than 10. We remove the regression variable (SNACENT) from
the model and recompute the inflation factors. In the resulting model (Model 3
in Table 3), no variables have a VIF larger than 5 and we finish our analysis of
multicollinearity.

390 Empir Software Eng (2013) 18:375–431

Table 3 Step-wise analysis of
multicollinearity in the
ECLIPSE 3.0 dataset

Bold entries denote variables
that have been selected for
removal during VIF analysis
(highest VIF measures in each
model)

log(Yi) Variance inflation factor

Model 1 Model 2 Model 3

NSOURCE 3.38 3.38 3.40
NSCOM 3.34 3.34 3.36
NPATCH 3.94 3.88 3.90
PATCHS 3.84 3.82 3.84
NTRACE 4.62 4.60 4.57
TRACES 4.78 4.75 4.70
NLINK 2.24 2.22 1.90
NDEVS 9.32 9.27 1.91
NUSERS 4.55 4.54 2.30
SNACENT 10.66 10.65 —
NMSG 11.63 — —
REPLY 1.17 1.17 1.17
REPLYE 2.04 1.91 1.90
DLEN 4.21 1.91 1.87
DLENE 4.65 1.98 1.96
INT 2.82 2.82 2.60
INTE 1.71 1.71 1.71
WA 2.26 1.99 1.96
WAE 2.08 2.06 2.02

4.3 Hierarchical Analysis

After having determined the reduced set of regression variables with low multi-
collinearity, we proceed by investigating the relative impact of each of the four
dimensions of social interaction metrics on the post-release defects.

The results of our hierarchical analysis are presented in Table 4. We start our
hierarchical analysis with a baseline model which relates code churn (number of
lines added, deleted, or modified in a file from one version to another) (Munson
and Elbaum 1998) to post-release defects. Code churn has been shown in the past
to be one of the best code-based predictors of defects (Nagappan and Ball 2005,
2007), even when used across projects (Zimmermann et al. 2009). We obtained a
measure of churn by mining the change histories of each file in the project’s version
control system. The results for the baseline model are presented in column MB of
Table 4 and show that CHURN is positively associated to the failure proneness of a
file during the post-release period. As expected, these results are in line with earlier
findings (Nagappan and Ball 2005, 2007).

Model M1 introduces the first dimension of social interaction: metrics concerned
with the contents of issue report discussions. The results of the logistic regression
model show that only specific structural information items are statistically significant.
When looking at the odds ratios, we observe a significant relationship between the
number of files modified by patches (PATCHS) and future failure proneness of files.
This result confirms earlier findings on the risk of scattered changes (Hassan 2009).

The second observation we make is a positive link between the number of source
code samples (NSOURCE) and future defects. This is surprising, as we initially
expected code samples to have a beneficial effect (as explained earlier in the
motivation of this metric). One possible explanation might be that developers trust
user provided sample solutions and incorporate their proposed (yet possibly flawed)

Empir Software Eng (2013) 18:375–431 391

Table 4 Hierarchical analysis of logistic regression models along the four dimensions of social
interaction metrics in ECLIPSE 3.0

log(Yi) MB M1 M2 M3 M4 M5

CHURN 4.996 	 4.631 	 4.658 	 5.303 	 3.688 	 4.470 	

NSOURCE 1.694 	 1.698 	 1.772 	 1.769 	 1.667 	

NTRACE 0.79 0.768 0.864 0.881 1.115
NPATCH 0.209 ◦ 0.210 ◦ 0.284 + 0.231 ◦ 0.291
NSCOM 1.218 1.194 1.246 1.208 1.244
PATCHS 12.607 ◦ 12.626 ◦ 11.200 ◦ 12.736 ◦ 18.207 •
TRACES 1.016 1.012 1.004 0.989 0.975
NLINK 1.764 	 1.613 • 1.600 • 1.666 • 1.596 +
NPART 2.481 2.888 4.480 4.542
NDEVS 0.475 0.582 0.385 0.274
NUSERS 0.749 0.803 0.692 0.792
REPLY 1.019 0.986 0.982
REPLYE 0.117 	 0.082 	 0.044 	

DLEN 0.936 0.898 ◦ 0.876 +
DLENE 2.499 1.251 2.044
INT 0.829 • 0.821 • 0.963
INTE 1.109 1.013 1.306
WA 1.432 	 1.224 +
WAE 2.718 ◦ 2.169
CON1-3 Fig. 4 	

χ2 559.01 	 698.5 	 700.15 731.5 	 752.3 	 1055.19 	

Dev. Expl. 10.71% 13.38% 13.41% 14.02% 14.41% 26.07%

χ2 139.48 1.652 31.357 20.28 302.87

For every stepwise model, we report odds ratios for each regression coefficient, as well as a goodness
of fit metric (χ2), the percentage of variation in the data each model explains (Dev. Expl) and the
difference in goodness of fit compared to the previous hierarchical modelling step (
χ2)
Bold entries denote statistically significant coefficients with a p level lower than 0.05
	 p < 0.001, • p < 0.01, ◦ p < 0.05, + p < 0.1

modifications without further verification; another explanation might be that code,
which warrants an extended discussion, is more complex and thus more error-prone.

Furthermore, we observe a strong relationship between the number of links
(NLINK) provided by users and failure proneness. One possible explanation for this
relationship could be, that links to additional information (such as related issues) act
as an indicator for hard-to-fix, or complex problems.

Summary: Overall the results show that discussion content metrics are indicators
of increased future failure proneness of a f ile. The explanatory power of the model
increases by 2.67% over the baseline model and this increase is statistically signif icant.

Model M2 introduces the second dimension of social interaction metrics: informa-
tion on social structures. The results show that the role of participants and the overall
amount of participants in a discussion have no statistically significant impact on the
future failure proneness of files. As a result we see no increase in the explanatory
power of the model by introducing the role of participants. We left out the measures
of experience from this model, as we record them as factors with many levels that may

392 Empir Software Eng (2013) 18:375–431

R
el

at
iv

e
Im

pa
ct

 (
O

dd
s

R
at

io
s)

Fig. 4 Odds ratios for experience metrics in model M5, each index represents one distinct level
(developer) of the factor variables

disrupt our hierarchical modelling approach. We will revisit these measures later in
model M5.

Summary: Overall, we cannot f ind a signif icant relation between the role of partici-
pants and post-release defects. The explanatory power of the extended model increases
only marginally, however this increase is not statistically signif icant.

Model M3 introduces metrics from the category of communication dynamics.
The results show a statistically significant and strongly negative relation between
the measure of reply time entropy and future failure likelihood, yet there exists no
statistically significant relation between the related quantitative measure of average
reply time length. The link between reply time entropy and failure proneness stays
strong throughout the hierarchical process and indicates a relevant relationship.
The second relation that we find is a moderately negative relation between the
interestingness of an issue report and post-release defects. This relation however
becomes irrelevant at a later point, when we introduce experience in model M5.

Summary: Overall, we observe a strong ef fect of discussion f low inconsistencies
on the failure proneness of f iles associated with the discussion. Even though the
explanatory power of the extended model increases by only 0.61%, this increase is
statistically signif icant.

Model M4 introduces the last category of social interaction metrics used in our
study: workflow activity. Our results show a positive relationship (with respect to the
odds ratios of the corresponding regression coefficients) between the total amount
of workflow activities and post-release defects. In particular, increased workflow
activity and workflow activity entropy are both connected to a substantial increase in
post-release defects.

Empir Software Eng (2013) 18:375–431 393

Summary: Our f indings suggest that workf low activities play a marginal, comple-
mentary role in the relation between social interaction metrics and post-release defects.
This is also indicated by the minor, yet statistically signif icant increase of explanatory
power of the extended model (0.39%) when adding workf low activity metrics.

We revisit the dimension of social structures in Model M5, by adding our measures
of experience. These measures are expressed as three factors (with the unique login
handles of discussion participants as levels) and record the three most experienced
contributors for each discussion. When used in a regression model, each factor
generates a large quantity of binary variables (as many as it has different levels).
As a consequence, we do not show the complete model containing all these binary
variables. However, we measure the inherent effect of the factors on the statistical
model, using a random-effect analysis of variance (often referred to as type II
ANOVA test), and present a plot of the odds ratios of each factor level in Fig. 4. As
contributors are uniquely identified in the ECLIPSE issue tracking system by their
email addresses, we do not include their names in this paper for privacy reasons;
instead we anonymized each name by assigning a unique number. Our analysis of
variance tests for the experience measures shows that they are statistically significant
at p < 0.001. From the plot of odds ratios for each developer in Fig. 4, we observe
that certain experienced participants in a discussion are strongly related to the
presence of post-release defects (indicated by the spikes of the relative odds ratios in
the plot).

The increase in explanatory power of model M5 is over-proportionally large
(compared to the effect of the previous four dimensions). As a result, we performed
further analysis to determine, whether the inclusion of the experience metric leads
to overfitting in the statistical model (i.e., the effect captured in this metric describes
random observations, rather than a real underlying relationship).

To judge possible overfitting, we divide our complete set of data into a training
set (90% of the data) and a testing set (10%) of the data. On both sets we train a
Model M5 and compare the χ2 values. We repeat this process ten times, with random
90/10 splits (often referred to as “10-fold cross validation”). In each of these 10 runs,
we observe a large difference (corresponding to differences between 10.12% and
16.31% of deviance explained) in χ2 values between the model obtained from the
training set and the model obtained from the testing step. These large differences
confirm that CON1-CON3 indeed lead to an overfitting of the regression model and
should thus not be included in the statistical model(s).

Summary: Overall, the experience metric increases the explanatory power of the ex-
tended model signif icantly. The increase of 11.66% is statistically signif icant. The plot
of odds ratios for each developer determined as experienced suggests that particular
contributors in a discussion act as an indicator for future failure proneness. However,
we found that the inclusion of this metric leads to a severe over-f itting in the model. As
a result, we need to exclude CON1-CON3 for the rest of this paper, and perform any
comparisons between projects and releases based on model M4.

4.4 Additional Versions of ECLIPSE

We repeated the same hierarchical modelling approach for two additional re-
leases of ECLIPSE. The final models are presented in Tables 5 and 6. During

394 Empir Software Eng (2013) 18:375–431

multi-collinearity analysis, we removed NDEV and NMSG in the case of ECLIPSE
3.1, and NPATCH, SNACENT, as well as NMSG in the case of ECLIPSE 3.2. As
a result, the SNACENT regression variable was only available for building models
of ECLIPSE 3.1, in which it was not deemed statistically significant. Overall, we
observe a similar increase of explanatory power as in our detailed case study of
ECLIPSE 3.0. Each introduction of the four dimensions of metrics adds a statistical
significant (yet relatively small) amount of information to the models. Notably, in
ECLIPSE 3.1 and ECLIPSE 3.2, the information added by the second dimension
(social structures), is deemed statistically significant, as opposed to ECLIPSE 3.0.

Overall, we find the following regression variables consistent across all studied
releases: code churn (CHURN), number of source code examples (NSOURCE),
number of files modified by patches (PATCHS), number of stack traces (NTRACE),
discussion length (DLEN), and variability of interestingness (INTE). Among
these metrics, CHURN, NSOURCE, PATCHS, and INTE are associated with an
increased risk of post-release defects, whereas NTRACE and DLEN are associated
with a reduced risk of post-release defects. Our findings confirm previous work
on the relationship between code churn and defects (Nagappan and Ball 2005),
modification spread and defects (Hassan 2009), as well as the helpfulness of stack
traces when correcting defects (Schroter et al. 2010). The observed relationship

Table 5 Hierarchical analysis of logistic regression models along the four dimensions of social
interaction metrics for ECLIPSE 3.1

log(Yi) MB M1 M2 M3 M4 M5

CHURN 6.573 	 5.723 	 5.668 	 5.253 	 3.295 	 3.873 	

NSOURCE 1.340 	 1.239 • 1.338 	 1.314 	 1.378 	

NSCOM 0.613 	 0.597 	 0.612 	 0.586 	 0.651 •
PATCHS 1.552 1.709 1.678 1.799 2.612
NPATCH 1.259 1.050 1.601 1.450 1.817
NTRACE 0.701 + 0.643 ◦ 0.668 ◦ 0.730 0.778
TRACES 1.094 + 1.123 ◦ 1.157 • 1.090 + 1.100 +
NLINK 0.274 	 0.270 	 0.252 	 0.240 	 0.352 	

NUSERS 3.480 	 4.240 	 5.040 	 3.887 	

SNACENT 0.254 	 0.143 	 0.212 • 0.246 ◦
REPLY 0.972 + 0.917 	 0.958 ◦
REPLYE 3.610 	 2.565 ◦ 2.514 ◦
DLEN 0.761 	 0.717 	 0.753 	

DLENE 27.210 	 6.561 	 3.018 ◦
INT 1.081 + 1.071 1.149 ◦
INTE 1.545 • 1.144 1.376 +
WA 1.710 	 1.410 	

WAE 3.924 	 3.618 	

Chi Sq. 1643.98 2134.46 	 2434.56 	 2644.3 	 2744.02 	 4288.3 	

Dev. Expl. 11.66% 15.15% 17.27% 18.75% 19.46% 30.41%
Delta Chisq 490.48 300.1 209.74 99.72 1544.28

For every stepwise model, we report odds ratios for each regression coefficient, as well as a goodness
of fit metric (χ2), the percentage of variation in the data each model explains (Dev. Expl) and the
difference in goodness of fit compared to the previous hierarchical modelling step (
χ2)
	 p < 0.001, • p < 0.01, ◦ p < 0.05, + p < 0.1

Empir Software Eng (2013) 18:375–431 395

Table 6 Hierarchical analysis of logistic regression models along the four dimensions of social
interaction metrics for ECLIPSE 3.2

log(Yi) MB M1 M2 M3 M4 M5

CHURN 4.614 	 4.277 	 4.312 	 3.332 	 4.867 	 5.809 	

NSOURCE 1.991 	 1.933 	 2.042 	 2.056 	 1.894 	

NSCOM 0.572 	 0.604 	 0.564 	 0.552 	 0.487 	

PATCHS 1.592 1.525 1.648 1.791 2.083
NTRACE 0.581 ◦ 0.566 ◦ 0.690 0.678 0.604
TRACES 1.223 	 1.225 	 1.167 ◦ 1.182 • 1.133 +
NLINK 1.254 	 1.223 • 1.136 1.056 1.543 	

NDEVS 0.882 ◦ 0.814 • 0.785 	 0.869
NUSERS 1.186 • 1.126 + 1.134 + 0.866
REPLY 1.002 1.029 ◦ 1.059 •
REPLYE 4.808 	 5.073 	 7.708 	

DLEN 0.858 	 0.904 	 0.948
DLENE 0.305 	 0.541 + 0.150 	

INT 1.210 	 1.186 	 1.081
INTE 2.580 	 3.415 	 3.148 	

WA 0.728 	 0.744 	

WAE 0.342 	 0.257 	

Chi Sq. 1198.83 	 1355.13 	 1364.31 ◦ 1470.4 	 1521.04 	 3106.11 	

Dev. Expl. 7.84% 8.86% 8.92% 9.62% 9.95% 20.31%
Delta Chisq 156.3 9.18 106.09 50.64 1585.07

For every stepwise model, we report odds ratios for each regression coefficient, as well as a goodness
of fit metric (χ2), the percentage of variation in the data each model explains (Dev. Expl) and the
difference in goodness of fit compared to the previous hierarchical modelling step (
χ2)
	 p < 0.001, • p < 0.01, ◦ p < 0.05, + p < 0.1

between the number of source code examples (NSOURCE) and post-release defects
might be explained through the need for concrete examples when issues are more
complex, or hard to locate and fix. Further investigation of the relationship between
variability in interestingness (INTE) and risk of post-release defects is needed before
we can attempt an explanation, and is part of our future work.

5 Case Study Two: Mozilla Firefox

5.1 Data Collection

For our case study on the Mozilla FIREFOX project, we obtained a snapshot of the
concurrent version control (CVS) system of the Mozilla platform, and a snapshot
of the BUGZILLA issue tracking system. The CVS system contains the development
history of the Mozilla platform up to (but not including) version 3.5 of the FIREFOX
browser. For the development of FIREFOX version 3.5 and higher, the Mozilla team
switched to the Mercurial distributed version control system.

Overall, we collected a total of 567,595 issues that have been submitted to the
BUGZILLA system between April 1997 and August 2010. The collected version con-
trol history contains a total of 664,626 changes (accounting for 217,919 transactions)

396 Empir Software Eng (2013) 18:375–431

that have been carried out between April 1998 and August 2010. For the Mozilla
FIREFOX project, crash logs were recorded in the form of Talkback traces between
release 2.0 and 3.0. This proprietary crash reporting system was replaced in release
3.0 with an open-source version. These new crash logs are no longer collected in the
issue tracking system. As a result, we have no stack trace measure available for our
case study on the Mozilla FIREFOX project.

In order to link issue reports to transactions in the version control system, we use
the same approach described in our case study on the ECLIPSE project (Section 4).
However, we modified the set of keywords that point at bug identifiers to include
those patterns that are specific to the Mozilla project. Overall, we were able to
recover 165,342 links between source code files and issue reports.

Similar to our case study on the ECLIPSE project (Section 4), we collected
measurements for a period of six months before the releases of FIREFOX 1.5
(released November 29th, 2005), FIREFOX 2.0 (released October 24th, 2006), and
FIREFOX 3.0 (released June 17th, 2008). For each release, we also collected the
amount of post-release defects for a period of six months after release. In the
following, we present a detailed case study on FIREFOX 3.0, which is followed by
a discussion and comparison of earlier releases.

5.2 Preliminary Analysis of Social Interaction Measures

For our case study on FIREFOX 3.0, we follow the same statistical approach
described earlier in our case study on the ECLIPSE project (Section 4.2) and begin
with a general analysis of the data in the form of descriptive statistics, followed by
an analysis of multi-collinearity. Table 7 presents a summary of our metrics in the
form of descriptive statistics. We again observe a relatively high amount of skew

Table 7 Descriptive statistics of social interaction measures in the Mozilla FIREFOX project

Mean SD Min Max Skew

POST 0.21 0.79 0.00 22.00 7.89
CHURN 2.74 4.58 1.00 83.00 6.67
NSOURCE 6.13 14.86 0.00 130.00 5.08
NSCOM 0.65 0.83 0.00 13.00 2.18
NPATCH 0.00 0.03 0.00 1.00 25.88
PATCHS 0.00 0.04 0.00 1.00 23.96
NLINK 2.04 3.38 0.00 31.00 5.11
NPART 5.90 3.71 1.00 41.00 2.32
NDEVS 5.39 3.09 1.00 33.00 1.91
NUSERS 0.51 1.09 0.00 19.00 4.42
SNACENT 0.26 0.08 0.00 0.50 −0.39
NMSG 19.21 15.74 1.00 137.00 1.91
REPLY 53.82 92.05 0.00 2246.00 9.17
REPLYE 0.21 0.11 0.00 0.64 0.11
DLEN 1212.47 1330.70 2.00 13325.00 2.45
DLENE 0.31 0.09 0.00 0.52 −0.85
INT 9.70 8.61 0.00 106.00 2.30
INTE 0.12 0.18 0.00 1.00 1.45
WA 24.31 16.90 0.00 86.00 1.11
WAE 0.09 0.14 0.00 1.00 1.32

Empir Software Eng (2013) 18:375–431 397

in the data, such that we will use standard log transformations of all metrics in the
remainder of our analysis.

The results of our analysis of pair-wise correlations are presented in Fig. 5. We
see that our data exhibits a high amount of multi-collinearity that we have to deal
with before creating our statistical models. Especially notable are the observed
correlations between the measures of the number of participants in a discussion
(NPART, NDEVS, NUSERS) and most other metrics, as well as correlations
between interestingness (INTE) and workflow (WAE), and the size of patches
(PATCHS) and the number of patches submitted (NPATCH).

In order to resolve these multi-collinearity issues, we again perform a step-wise
VIF analysis, starting with a regression model that contains all our measurements as
independent variables and removing the variable with the highest VIF at each step,
before re-evaluating our model.

The results of this analysis are presented in Table 8. Model 1 denotes our starting
model, containing all variables. We observe that the number of messages in the
discussion (NMSG) has the highest VIF value of 20.44. We remove NMSG from
our model and re-evaluate the variance inflation factors (Model 2), at which point
we observe the highest VIF measure of 19.07 for the number of patches submitted
(NPATCH). We remove NPATCH from our model and re-compute all variance
inflation factors. In Model 3, we observe two variables with a VIF measure above
10: number of developers (NDEV) and the measure of centrality in the social net-
work (SNACENT), which both showed a high inter-correlation in the correlogram
(Fig. 5). We remove the variable with the higher VIF measure, NDEV at a value
of 14.03, and re-compute variance inflation factors of the remaining variables

Fig. 5 Pairwise correlations of social interaction metrics in Mozilla FIREFOX 3.0 with levels
* p < 0.05, ** p < 0.01, *** p < 0.001. Strength of correlations is indicated by colour intensities;
negative correlations are marked with an outline. The row labeled “post” refers to post-release
defects

398 Empir Software Eng (2013) 18:375–431

Table 8 Step-wise analysis of
multicollinearity in the
MOZILLA 3.0 dataset

Bold entries denote variables
that have been selected for
removal during VIF analysis
(highest VIF measures in each
model)

log(Yi) Variance inflation factor

Model 1 Model 2 Model 3 Model 4

NSOURCE 2.90 2.87 2.87 2.86
NSCOM 2.60 2.67 2.67 2.65
NPATCH 18.81 19.07 — —
PATCHS 18.75 19.00 1.05 1.03
NLINK 1.88 1.89 1.89 1.86
NDEVS 15.45 14.05 14.03 —
NUSERS 2.29 2.22 2.22 1.99
SNACENT 14.01 13.45 13.45 2.92
NMSG 20.44 — — —
REPLY 1.43 1.36 1.36 1.33
REPLYE 2.20 2.33 2.33 2.30
DLEN 8.91 3.01 3.01 2.99
DLENE 4.14 1.84 1.84 1.83
INT 3.73 3.71 3.71 3.40
INTE 5.74 5.92 5.92 5.88
WA 3.85 2.95 2.95 2.92
WAE 6.88 7.12 7.12 7.12

(Model 4). As all remaining variables have a VIF measure below 10, we stop at this
point and obtain our final set of variables with minimized multicollinearity.

5.3 Hierarchical Analysis

Using the reduced set of regression variables that we obtained by resolving multi-
collinearity issues through step-wise VIF analysis in Section 5.2, we continue our
hierarchical analysis to determine the relative impact of each of the four dimensions
of social interaction metrics on post-release defects.

The results of our step-wise hierarchical analysis are presented in Table 9. Similar
to our case study on ECLIPSE, we report all coefficients in the form of odds ratios,
rather than the actual regression coefficients themselves, to ease interpretation.

Our hierarchical analysis starts with a baseline model MB, which relates only code
churn to post-release defects. The results show, that churn is positively associated to
post-release defects, same as it was in the ECLIPSE project.

Model M1 introduces the first dimension, structural information present in the
discussions. Two information items turn out as statistically significant in the model:
the amount of source code present in the discussion (NSOURCE), with an odds ratio
of 0.891, and the amount of links (NLINK) with an odds ratio of 1.196. In contrast
to our case study on ECLIPSE 3.0, NSOURCE is connected with an odds ratio
smaller than 1.0, indicating that a larger amount of source code in the discussion
is connected with a lower chance of post-release defects. A manual inspection of
one hundred issue reports containing source code yielded no clear evidence on why
this connection is opposite to our findings for ECLIPSE 3.0. On the other hand,
the number of links in the discussion (NLINK), is connected with a larger amount
of post-release defects, as it was in our case study on ECLIPSE 3.0. One possible
explanation for this finding could be the presence of links to the external Talkback
crash-report tracking systems present in the discussions of issue reports.

Empir Software Eng (2013) 18:375–431 399

Table 9 Hierarchical analysis of logistic regression models along the four dimensions of social
interaction metrics for Mozilla FIREFOX 3.0

log(Yi) MB M1 M2 M3 M4 M5

CHURN 4.452 	 4.605 	 4.737 	 5.097 	 5.316 	 4.009 	

NSOURCE 0.891 ◦ 0.904 0.943 1.018 0.915
NSCOM 0.794 0.957 1.202 1.295 1.599 ◦
PATCHS 4.974 8.498 6.168 6.884 ◦ 42.806
NLINK 1.196 • 1.378 	 1.508 	 1.475 	 1.253 •
NPART 0.177 	 0.677 1.075 0.686
NUSERS 1.637 	 1.931 	 1.996 	 1.576 •
SNACENT 1208.985 • 44.281 2.050 67.204
REPLY 0.928 ◦ 0.987 1.000
REPLYE 0.016 	 0.067 	 0.247
DLEN 1.026 1.117 ◦ 1.043
DLENE 0.814 5.571 • 1.150
INT 0.507 	 0.557 	 0.846
INTE 3.061 • 3.969 • 2.836
WA 0.492 	 0.715 	

WAE 1.953 4.246
χ2 744.14 	 773.88 	 807.54 	 933.29 	 1007.11 	 1836.43 	

Dev. Expl. 14.90% 15.49% 16.17% 18.68% 20.16% 36.76%

χ2 29.74 33.66 125.75 73.82 829.32

For every stepwise model, we report odds ratios for each regression coefficient, as well as a goodness
of fit metric (χ2), the percentage of variation in the data each model explains (Dev. Expl) and the
difference in goodness of fit compared to the previous hierarchical modelling step (
χ2)
Bold entries denote significant regression coefficients (p level smaller than 0.05)
	 p < 0.001, • p < 0.01, ◦ p < 0.05, + p < 0.1

Summary: Overall, our results indicate that for FIREFOX 3.0, source code in a
discussion is connected with a decreased failure proneness, whereas the number of
links is connected with an increase failure proneness. The explanatory power of the
model increases by only 0.59% over the baseline model, however this increase is
deemed statistically signif icant through analysis of variance (ANOVA).

Model M2 introduces the second dimension of social interaction metrics: social
structures. Similar to our findings in our previous case study on ECLIPSE 3.1 and
ECLIPSE 3.2, we find a statistically significant connection of this dimension with
post-release defects. All three variables, the number of participants in a discussion
(NPART), the amount of participants that are considered users (NUSERS) and the
centrality measure, which describes the degree to which participants communicate
with everyone else in the discussion (SNACENT), are considered statistically sig-
nificant for this model. Considering the odds ratios of each variable, we find that the
overall number of participants in the discussion is connected with a decrease of post-
release defects, whereas both the amount of users in the discussion as well as the
degree to which each participant talks to everyone else, connected with an increase
of post-release defects.

Summary: Overall, we f ind the second dimension, social structures to have a sta-
tistically signif icant ef fect on the explanatory power of our model. Even though the

400 Empir Software Eng (2013) 18:375–431

relative increase in explanatory power over model M1 is only 0.68%, this minor
increase is statistically signif icant.

Model M3 introduces the third dimension of metrics: communication dynamics.
The results show a statistically significant and negative relation between the mea-
sures of reply time (REPLY) and the corresponding entropy measure (REPLYE),
as well as interestingness of an issue report (INT). The variability in interestingness
(INTE) shows the same statistically significant and positive relation to the risk of
post-release defects, that we have observed earlier in our case study on ECLIPSE.

Summary: Overall, we observe that the introduction of the third dimension (com-
munication dynamics) leads to a four to f ive times increase of explanatory power
in the model compared to the previous two dimensions (+2.51%). This increase is
statistically signif icant. Similar to our f indings in ECLIPSE, discussion f low and
interestingness are strongly connected to post-release defects.

Model M4 introduces the fourth dimension of social interaction metrics used
in our study: workflow activity. In contrast to our findings on ECLIPSE 3.0, our
results show a statistically significant, strongly negative relation between the amount
of workflow activities (WA) and post-release defects in FIREFOX 3.0. Upon

Table 10 Hierarchical analysis of logistic regression models along the four dimensions of social
interaction metrics for FIREFOX 1.5

log(Yi) MB M1 M2 M3 M4 M5

CHURN 6.437 	 6.000 	 6.114 	 5.250 	 4.761 	 4.618 	

NSOURCE 1.162 	 1.104 ◦ 1.159 • 1.161 • 1.189 •
NSCOM 1.320 	 1.780 	 2.407 	 2.378 	 1.279
PATCHS 0.568 0.477 0.676 0.731 0.360
NLINK 1.073 ◦ 1.348 	 1.267 	 1.265 	 1.046
NPART 0.474 	 0.682 0.641 + 1.938 +
NUSERS 1.150 ◦ 1.055 1.068 0.662 	

SNACENT 2.931 7.403 14.568 + 0.140
REPLY 1.054 ◦ 1.050 ◦ 1.048
REPLYE 0.397 + 0.384 ◦ 0.055 	

DLEN 0.856 	 0.879 • 1.040
DLENE 0.075 	 0.081 	 0.046 	

INT 0.907 ◦ 0.888 ◦ 0.716 	

INTE 4.148 	 2.212 ◦ 4.004 ◦
WA 0.966 0.945
WAE 4.190 • 4.672 ◦
Chi-Sq 1269.46 	 1365.92 	 1432.34 	 1583.29 	 1593.34 	 2760.34 	

Dev.Expl 14.75% 15.87% 16.64% 18.40% 18.51% 32.07%
Delta Chisq 96.46 66.42 150.95 10.05 1167

For every stepwise model, we report odds ratios for each regression coefficient, as well as a goodness
of fit metric (χ2), the percentage of variation in the data each model explains (Dev. Expl) and the
difference in goodness of fit compared to the previous hierarchical modelling step (
χ2)
Bold entries denote statistically significant coefficients with a p level lower than 0.05
	 p < 0.001, • p < 0.01, ◦ p < 0.05, + p < 0.1

Empir Software Eng (2013) 18:375–431 401

manual inspection of the workflow activities in FIREFOX, we found a large amount
of supporting workflow activities, such as the addition of attachments, modification
or addition of supporting meta-information, such as version information, keywords,
quality assurance contacts, or testing and debugging information. In contrast, we
found a relatively strong emphasis on actual process activities such as the re-
assignment of the issue to a different developer, and other status changes that
commonly relate to bug tossing (Guo et al. 2011) in ECLIPSE.

Summary: Overall, the introduction of workf low activity metrics increases the ex-
planatory power of the model by 1.48%. This increase is statistically signif icant.
Our f indings indicate a strong negative relation between workf low activities and post
release defects.

5.4 Additional Versions of Firefox

We repeated the same hierarchical modelling approach for two additional releases of
FIREFOX. The final models are presented in Tables 10 and 11. Analysis of variance
inflation factors led to the exclusion of NMSG and NDEVS in FIREFOX 1.5, and
the exclusion of NMSG, NDEVS, as well as NPATCH in FIREFOX 2.0. As a

Table 11 Hierarchical analysis of logistic regression models along the four dimensions of social
interaction metrics for FIREFOX 2.0

log(Yi) MB M1 M2 M3 M4 M5

CHURN 4.336 	 4.328 	 4.450 	 2.754 	 2.643 	 4.162 	

NSOURCE 0.973 0.966 1.018 1.019 1.073
NSCOM 1.121 1.107 1.548 • 1.548 • 1.041
PATCHS 2.219 2.155 3.258 3.425 7.294
NLINK 1.084 ◦ 1.185 	 1.208 	 1.198 	 0.967
NPART 1.051 0.592 + 0.610 + 0.780
NUSERS 0.607 	 0.678 	 0.685 	 0.651 ◦
SNACENT 1.320 74.664 ◦ 81.532 ◦ 3.180
REPLY 1.036 + 1.034 + 1.089 ◦
REPLYE 0.446 + 0.493 + 0.399
DLEN 0.829 	 0.860 	 0.866 ◦
DLENE 0.134 	 0.198 	 0.848
INT 1.302 	 1.254 	 1.411 •
INTE 10.095 	 4.948 	 5.228 •
WA 0.912 + 0.871 +
WAE 4.380 • 2.261
ChiSq 1292.6 	 1298.99 1347.93 	 1605.97 	 1621.35 	 3942.5 	

Dev.Epl. 12.67% 12.74% 13.22% 15.75% 15.90% 39.15%
DeltachiSq 29.74 33.66 125.75 73.82 829.32

For every stepwise model, we report odds ratios for each regression coefficient, as well as a goodness
of fit metric (χ2), the percentage of variation in the data each model explains (Dev. Expl) and the
difference in goodness of fit compared to the previous hierarchical modelling step (
χ2)
Bold entries denote statistically significant coefficients with a p level lower than 0.05
	 p < 0.001, • p < 0.01, ◦ p < 0.05, + p < 0.1

402 Empir Software Eng (2013) 18:375–431

result, NPATCH was only available for FIREFOX 1.5, where is was not deemed
statistically significant, and NDEVS was not available for any release of FIREFOX.

Overall, we observe a similar increase in explanatory power for each dimension,
as seen in the detailed case study on FIREFOX 3.0. This is especially true for
the large increase in explanatory power, when including experience metrics in
models M5. We find the following metrics consistent across all three releases of
FIREFOX: CHURN, NSOURCE, NSCOM, PATCHS, NLINK, SNACENT, INTE
and WAE are statistically significant and connected with an increased risk of post-
release defects. REPLYE and WA are statistically significant and connected with
a decreased risk of post-release defects. On the whole, we observe a larger set of
consistent metrics for FIREFOX, than in the case of ECLIPSE.

6 Discussion of the Results of Both Case Studies

In this section, we present a summary and comparison of our findings from both
case studies. For the purpose of comparing the regression variables of each model,
we cannot directly compare the odds ratios, as discussed in Section 3. Instead we
follow a standard approach in statistics, which has been successfully used in previous
research (Mockus et al. 2009): to gain a comparable notion of the relative effect of
each regression variable in each model, we first compute the mean values of each
regression variable across the whole population from which the regression model
was built. We use these mean values as an input into the linear equations connected
with model M4 in each case study. This equation has the form Y = β0 + β1v1 . . . βnvn,
with βi the regression coefficients reported earlier, and vi the mean values for each
regression variable. For each regression variable, we then increase that one variable
by 20%, keeping all other regression variables constant, and obtain a value YE.
The difference
Y = YE − Y describes the relative effect of each regression variable
on post-release defect probability within its respective range. Table 12 presents the
results of this analysis for each project and release. To increase readability, we have
ordered the regression variables for each model according to
Y in decreasing order.

To further enable a simpler comparison of the effect of regression variables
on post-release defect probability across releases and projects, we summarize our
observations from Table 12 in Table 13. Regression variables that are statistically
significant at p < 0.005 are marked in bold font face. When a regression variable
increased the probability of post-release defects we put the value “POS”, whenever
a regression variable decreased the probability of post-release defects, we put the
value “NEG”. Variables that were removed by VIF analysis or were not available in
a project (such as TRACES and NTRACE in FIREFOX), are left blank.

Overall, we note that only a few variables show a statistically significant con-
nection to post-release defects across all releases and projects. In particular, these
variables are: CHURN, NLINK, REPLYE, and INT. We also observe a number of
regression variables, that are deemed statistically significant for one project but not
for the other. In particular these variables are: NSCOM in FIREFOX, SNACENT in
ECLIPSE, DLEN in ECLIPSE, INTE in FIREFOX, WA in ECLIPSE, and WAE in
ECLIPSE.

Apart from statistical significance, the more interesting observation is the di-
rection of effect, each variable has on the probability of post-release defects. We

Empir Software Eng (2013) 18:375–431 403

observe, that CHURN, NSOURCE, PATCHS and INTE are consistently connected
with an increased risk of post-release defects across all releases of both projects. For
both, code churn (CHURN) and number of files modified by patches (PATCHS),
these findings are in line with previous work (Hassan 2009; Nagappan and Ball 2007).
However, the relationships between number of source code examples and post-
release defects, as well as interestingness entropy and post-release defects are neither
obvious, nor intuitive, and open research opportunities for future work. Overall, we
would like to note, that these variables (in addition to code churn) might be valuable
for the use in defect prediction across releases and projects.

Table 12 Relative effect of a
20% increase of a predictor
variable on post-release defect
probability

Delta Y Variable Delta Y Variable

Eclipse 3.0 Firefox 1.5
0.218179 NPART 0.222083 CHURN
0.179844 CHURN 0.050918 NSCOM
0.059674 WA 0.027278 WAE
0.050326 NSOURCE 0.026945 NLINK
0.028323 WAE 0.024222 NSOURCE
0.016858 NLINK 0.019508 INTE
0.008306 DLENE 0.009344 REPLY
0.00775 NSCOM 0.003484 SNACENT
0.006909 PATCHS 0.000899 PATCHS
0.000314 INTE 0.000716 NUSERS

−0.001661 TRACES −0.001256 NPATCH
−0.002524 REPLY −0.004555 WA
−0.003112 NTRACE −0.023008 DLEN
−0.006269 NPATCH −0.025847 REPLYE
−0.019646 DLEN −0.026162 INT
−0.028327 NUSERS −0.117742 DLENE
−0.028965 INT
−0.045887 REPLYE
−0.132794 NDEVS

Eclipse 3.1 Firefox 2.0
0.151672 CHURN 0.139716 CHURN
0.088716 WA 0.064652 SNACENT
0.078401 DLENE 0.040164 INTE
0.067766 NUSERS 0.031841 INT
0.026875 WAE 0.029121 WAE
0.020078 REPLYE 0.022206 NSCOM
0.018092 NSOURCE 0.021536 NLINK
0.010273 TRACES 0.005882 REPLY
0.009493 INT 0.002539 NSOURCE
0.002724 INTE 0.00018 PATCHS
0.000361 NPATCH −0.016856 WA
0.000243 PATCHS −0.018102 REPLYE

−0.00562 NTRACE −0.026412 NUSERS
−0.015629 REPLY −0.027568 DLEN
−0.017509 NSCOM −0.071109 DLENE
−0.049688 SNACENT
−0.06054 DLEN
−0.101094 NLINK

404 Empir Software Eng (2013) 18:375–431

Table 12 (continued) Delta Y Variable Delta Y Variable

Eclipse 3.2 Firefox 3.0
0.200102 CHURN 0.228522 CHURN
0.043769 NSOURCE 0.079335 DLENE
0.030726 REPLYE 0.048993 NLINK
0.023857 INT 0.045122 NUSERS
0.021552 INTE 0.029235 SNACENT
0.017061 TRACES 0.028377 INTE
0.005456 NUSERS 0.020166 DLEN
0.005128 REPLY 0.019694 NSCOM
0.002244 NLINK 0.011393 NPART
0.000235 PATCHS 0.011063 WAE

−0.004347 NTRACE 0.002835 NSOURCE
−0.015711 NSCOM 0.000679 PATCHS
−0.018358 DLEN −0.002309 REPLY
−0.022822 WAE −0.091363 REPLYE
−0.023887 DLENE −0.097416 INT
−0.032865 NDEVS −0.124795 WA
−0.051129 WA

Furthermore, we observe a number of regression variables that are consistent
within one project. In particular, these variables are: NSCOM, NLINK, SNACENT,
REPLYE, WA and WAE for FIREFOX, as well as NDEVS, DLEN, and SCNA-
CENT for ECLIPSE. These variables might still be valuable for the use in defect
prediction within the same project, across multiple releases of the software.

Table 13 Summary of effect direction of each regression variable on the probability of post-release
defects

Mozilla Eclipse

v1.5 v2.0 v3.0 v3.0 v3.1 v3.2

CHURN POS POS POS POS POS POS
NSOURCE POS POS POS POS POS POS
NSCOM POS POS POS POS NEG NEG
NPATCH NEG NEG POS
PATCHS POS POS POS POS POS POS
NTRACE NEG NEG NEG
TRACES NEG POS POS
NLINK POS POS POS POS NEG POS
NUSERS POS NEG POS NEG POS POS
NDEVS NEG NEG
SNACENT POS POS POS NEG
DLEN NEG NEG POS NEG NEG NEG
DLENE NEG NEG POS POS POS NEG
REPLY POS POS NEG NEG NEG POS
REPLYE NEG NEG NEG NEG POS POS
INT NEG POS NEG NEG POS POS
INTE POS POS POS POS POS POS
WA NEG NEG NEG POS POS NEG
WAE POS POS POS POS POS NEG

Statistically significant regression variables at p < 0.005 are marked in bold font

Empir Software Eng (2013) 18:375–431 405

In addition to the particular relationships between single regression variables
and the probability of post-release defects, we observe a number of consistent
trends for our overall prediction models. In particular, the four dimensions of social
interaction metrics are able to improve the explanatory power of models between
2.17 (FIREFOX 1.5) and 3.08 (FIREFOX 2.0) times the power of the baseline
models, built on code churn. Second, each dimension adds a statistically significant
amount of explanatory power of the previous dimensions (except for dimension two,
social structures in the case studies of FIREFOX 2.0 and ECLIPSE 3.0).

6.1 Discussion of Entropy Measures

In order to interpret the observations for variables, which capture the variability
of particular metrics across different observations (messages, discussions, files), we
discuss each such variable in more detail in the remainder of this section.

For each assessment of entropy metrics, we first split the original dataset from
which we built the regression models used in our case studies into two parts: one
part contains all the files that had at least one post-release defect in the period
of 6 months after release; the other part contains those that had none. For each
part, we then collect the measurements of entropy and compare both distributions
of measurements using an unpaired two-sided non-parametric statistical test, called
the Mann-Whitney-U test, which is more robust against outliers than classical test,
such as Student’s t-test and does not rely on the assumption that the underlying data
has normal distribution (Fay and Proschan 2010). The results of this analysis are
summarized in Table 14 and discussed in the following.

6.1.1 Discussion of Entropy in Discussion Length (DLENE)

For both projects, we consistently observe a higher mean entropy for discussion
length in files that had no post-release defects, than in files that had post-release de-
fects. Except for ECLIPSE 3.0, the Mann-Whitney test confirms that this difference
is statistically significant at p < 0.005.

Summary: For ECLIPSE and FIREFOX, f iles that have no post-release defects exhibit
more consistency in the length of the discussions on issue reports, connected to those
f iles. Hence, we conclude that a larger variability in wordiness of discussions is
connected to an increased risk of post-release defects.

Table 14 Summary of entropy measure analysis for ECLIPSE and FIREFOX

Metric Eclipse 3.0 Eclipse 3.1 Eclipse 3.2 Firefox 1.5 Firefox 2.0 Firefox 3.0

DLENE — μ1 > μ2 μ1 > μ2 μ1 > μ2 μ1 > μ2 μ1 > μ2

REPLYE μ1 > μ2 — μ1 > μ2 — μ1 > μ2 μ1 > μ2

INTE — μ1 < μ2 μ1 < μ2 μ1 < μ2 μ1 < μ2 μ1 < μ2

WAE μ1 < μ2 μ1 < μ2 μ1 < μ2 μ1 < μ2 μ1 < μ2 μ1 < μ2

μ1 denotes the mean entropy for files with no post-release defects; μ2 denotes the mean entropy for
files with post-release defects; — denotes Mann-Whitney test did not reject H0 at p < 0.005

406 Empir Software Eng (2013) 18:375–431

6.1.2 Discussion of Entropy in Reply Time (REPLYE)

For both projects, we consistently observe a statistically significant connection
between the variability in reply times between discussion messages, and post-release
defects. For FIREFOX 2.0 and FIREFOX 3.0, as well as for ECLIPSE 3.0 and
ECLIPSE 3.2, we find that the mean value of reply time entropy is higher for files
that had no post-release defects, than for files that had post-release defects. Except
for FIREFOX 1.5 and ECLIPSE 3.1, the Mann-Whitney test, confirms that the
differences in both projects are statistically different at p < 0.005.

Summary: Since a lower measure of entropy value is connected to a greater spread
of values, we conjecture that for both projects outliers in reply time, i.e., a signif icant
delay in the f low of the discussion, is connected to a larger risk of post-release defects.
Our f indings thus indicate that inconsistencies in information f low stand in relation to
post-release defects.

6.1.3 Discussion of Entropy in Interestingness (INTE)

For both projects, we observe that the mean entropy for interestingness is lower
in files that had no post-release defects, than in files that had post-release defects.
Except for ECLIPSE 3.0, the Mann-Whitney test confirms that the difference is
statistically significant at p < 0.005.

Summary: Files that have no post-release defects exhibit a larger variability of inter-
estingness across all the issue reports connected to that f ile. At the same time, f iles that
have post-release defects show a more consistent interestingness across all issue reports
connected to that f ile. Hence, we conclude that a larger variability in interestingness is
connected to a decreased risk of post-release defects.

6.1.4 Discussion of Entropy in Workf low Activity (WAE)

We observed a statistically significant connection between workflow activity entropy
and post-release defects for both, FIREFOX and ECLIPSE. Similarly, we find for both
projects, a lower mean entropy for workflow activity in files that had no post-release
defects, than in files that had post-release defects. A Mann-Whitney test confirms
that the difference between both distributions is statistically significant at p < 0.005
in all cases.

Summary: Files that have no post-release defects exhibit a larger variability of
workf low activity across all the issue reports connected to that f ile. At the same time,
f iles that have post-release defects show a more consistent workf low activity across all
issue reports connected to that f ile. We hence conjecture that workf lows involving a
greater variety of steps are connected to an increased risk of post-release defects.

7 Enhancing Traditional Models with Social Information

Through the two case studies presented in Sections 4 and 5, we have demonstrated
that statistical models based on social interaction metrics yield an increase in

Empir Software Eng (2013) 18:375–431 407

explanatory power of up to 16.36% (ECLIPSE) to 21.86% (FIREFOX) over the
baseline model using code churn.

In this part of our analysis we want to investigate whether social information met-
rics can augment existing, top-performing defect prediction models that are based on
an extensive set of source-code and file metrics. To perform this comparison, we use
a publicly available defect prediction dataset, which was prepared by the University
of Saarland (Zimmermann et al. 2007). As Bird et al. note (Bird et al. 2009), this
dataset is extensively documented and has been widely used in research.

Among other information, this data set contains a variety of source-code and file-
level metrics for files of different Eclipse releases. We are specifically interested in
the latest release contained in this dataset, Eclipse 3.0, as we measured the social
interaction metrics presented in this study during the same time period. Both datasets
contain a different set of metrics for the same source code files: Zimmermann et al.’s
dataset contains source code metrics, whereas our dataset contains social interaction
metrics. We will use a combination of both datasets for the remainder of this section,
to study the effects of combining both sources of information.

We first re-create the original code-metrics based model created by Zimmermann
et al. (2007). The original statistical model M is presented in Table 15. This model
contains the following regression variables: pre denotes the amount of defects
associated with the file in the past 6 months before release. MLOC_max measures the
maximum amount of non-blank, non-comment lines of source code inside method
bodies. PAR measures the number of parameters inside method signatures, both as a
maximum across all methods in a file, and as a sum of all methods. TLOC denotes the
total lines of code in a file, including blank lines and comments.

We assess it using the same criteria as the models we derived from our hierarchical
analysis. Our results show that the model has an explanatory power of χ2 = 889.48
(17.04% of deviance explained) and all regression variables are statistically sig-
nificant at p < 0.1.

Next, we create an extended model M′ by adding the set of social interaction
metrics that we found statistically significant in our hierarchical analysis of ECLIPSE
3.0, to model M. This extended model is presented in Table 16. We observe that
the addition of social interaction metrics increases the explanatory power of the
new model M′ by χ2 = 716.55 to a total of χ2 = 1606.03. This corresponds to an
increase of 13.73% percent of additional deviance explained, to a total of 30.77%.
An ANOVA test confirms that the observed increase over the baseline model M is
statistically significant at p < 0.001. To compare, the best performing model based
on source code metrics was reported by Shihab et al., with a total of 21.2% of
deviance explained (Shihab et al. 2010b). By adding social interaction metrics, we are

Table 15 Baseline model M

Estimate Std. error z value Pr(>|z|)
(Intercept) −4.7228 0.2475 −19.08 0.0000
log(1 + pre) 1.1766 0.0890 13.22 0.0000
log(1 + MLOC_max) −0.2049 0.0606 −3.38 0.0007
log(1 + PAR_max) 0.4081 0.1324 3.08 0.0021
log(1 + PAR_sum) −0.1599 0.0888 −1.80 0.0716
log(1 + TLOC) 0.8058 0.0936 8.60 0.0000

408 Empir Software Eng (2013) 18:375–431

Table 16 Augmented model M′

Estimate Std. error z value Pr(>|z|)
(Intercept) −5.2783 0.2860 −18.46 0.0000
log(1 + pre) 0.9341 0.0987 9.46 0.0000
log(1 + NSOURCE) 0.5128 0.0657 7.81 0.0000
log(1 + NPATCH) −1.5056 0.7009 −2.15 0.0317
log(1 + PATCHS) 2.0683 0.9862 2.10 0.0360
log(1 + NLINK) 0.5146 0.1175 4.38 0.0000
log(1 + REPLYE) −2.0122 0.5515 −3.65 0.0003
log(1 + WA) 0.3919 0.0796 4.92 0.0000
log(1 + MLOC_max) −0.1839 0.0614 −3.00 0.0027
log(1 + PAR_max) 0.3795 0.1354 2.80 0.0051
log(1 + PAR_sum) −0.1743 0.0908 −1.92 0.0550
log(1 + TLOC) 0.7939 0.0950 8.36 0.0000

able to greatly outperform this model, demonstrating the additional value of social
information for defect prediction models.

Summary: The large increase in explanatory power of the augmented model demon-
strates that social interaction metrics are valuable for complementing traditional
prediction models based on source-code based product and process metrics.

8 Related Work

In the following, we discuss related research from the two major research areas of
defect prediction and social analyses of software development. Several researchers
have previously investigated the use of data captured from version control systems
and bug databases for defect prediction. Basili et al. (1996) established and promoted
the usefulness of object-oriented code metrics for predicting the defect density of
code. Ohlsson and Ahlberg were among the first researchers to use code-oriented
metrics to predict failure prone modules of a software (Ohlsson and Alberg 1996).

Extensive work by Nagappan and Ball (2005, 2007) has investigated the value
of code and churn metrics to predict defects in large-scale commercial systems.
Schroeter et al. showed that module dependencies, which are already available at
design time can be used to predict software defects (Schröter et al. 2006).

Hassan demonstrates in a large case study that prediction models based on change
complexity outperform traditional churn based prediction models (Hassan 2009).
Zimmermann et al. use social network measures on dependency graphs to predict
defects (Zimmermann and Nagappan 2008).

In contrast to previous research, the work presented in this study does not focus on
formulating accurate prediction models. We rather focus on using statistical models
and the insights about relationships between variables that can be gained from
studying these models, to investigate the relationships between social interactions
and software quality. As such, we use prediction models as an explorative tool in the
same vein of work done by Mockus et al. (2005, 2009).

Shihab et al. (2010b) carried out an analysis of the variation inflation factors of the
source-code based process and product metrics, initially reported for the ECLIPSE

Empir Software Eng (2013) 18:375–431 409

project by Zimmermann et al. (2007). Our work extends this study by adding social
interaction metrics to the defect prediction model presented in the study by Shihab
et al.

The work by Wolf et al. (2009) presents a case study on the use of social network
analysis measures obtained from inter-developer communication in the IBM Jazz
repository to predict build failures. Similar use of socio-technical network measures
to predict software defects has been carried out by Pinzger et al. (2008) and Meneely
et al. (2008).

A related study was conducted by Bacchelli et al. (2010) that investigates the
possible use of code popularity metrics obtained from email communication among
developers for defect prediction. Our work differs from these studies, as we use a va-
riety of measures of social information to study relationships between these measures
and the strength of their associations rather than performing actual predictions.

A recent study by Jeong et al. uses workflow activity recorded in the issue tracking
system of the ECLIPSE project to improve issue assignment. Together with the work
of Guo et al. (2010, 2011) as well as Shihab et al. (2010a), empirical evidence on
the possibly negative effects of workflow activity served as an intuition for including
workflow activity metrics for defect modelling in our work.

9 Threats to Validity

We discuss the limitations of our study and the applicability of the results derived
through our approach. For this purpose we discuss our work along four types of va-
lidity (Yin 1994): construct validity, internal validity, external validity and reliability.

9.1 Construct Validity

The assessment of construct validity aims at evaluating the meaningfulness of
measurements and whether they quantify what we want them to. The conjecture of
our work is that the social interactions between developers and users, which surround
the development process of a software system has an impact on the quality of the
final software product. In order to capture social interaction, we use issue tracking
systems as a repository containing records of such interaction. We focus on issue
tracking systems over less formal and structured repositories, such as mailing lists,
as issue tracking system are well understood and contain a wealth of historic data
surrounding the evolution and maintenance of a software system. Furthermore, they
contain meta-data that allows us to reliably establish traceability links back to the
source of a software system.

One big assumption of our work is that the source code and issue repositories
capture all the data, which might generally not be the case. However, the quality and
extend of data recorded in open-source projects is likely very high, as development
teams in open-source are often distributed across different countries and timezones,
and thus heavily depend on the completeness of data, for the success of their
collaborative software development efforts.

At the core of interaction in a software community are discussions, such as the
discussion on the reported issues recorded in issue tracking systems like BUGZILLA.
With respect to issue report discussions, we defined a set of metrics along four

410 Empir Software Eng (2013) 18:375–431

different conceptual dimensions. Our metrics of the first dimension, discussion
contents are based on a previous survey of developers (Bettenburg et al. 2008a)
and focus on quantifying the presence of those information items that developers
regarded as most helpful when working with issue reports (i.e., fixing a software
defect). We capture these information items through an automated approach, which
has been evaluated in previous research (Bettenburg et al. 2008a, b).

Our metrics of the second dimension, social structures, assume that the actors
in the issue tracking system can take on one of two roles: developer or user. We
follow previous work in the area (Jeong et al. 2009; Śliwerski et al. 2005) and define
a developer as an actor in the system who has been assigned to working on at
least one issue in the past. However, there might be actors present in the system,
who are developers, but have never been assigned to fixing a bug. Furthermore,
we capture the expertise of participants through determining the past amount
of contributed messages to discussions, as past research has demonstrated that
issues reported by experts have a higher likelihood of being successfully closed
(Guo et al. 2010). Our approach is limited by recording only the top three experts of
each discussion. We chose a threshold of three, to keep the artificial inflation of our
models through the introduction of ’dummy’ variables low. In order to capture the
structural properties of a discussion, we use a metric from social network analysis,
closeness-centrality (Wasserman and Faust 1994), which captures the extent, to
which a participant talks to every other participants. As closeness-centrality is a
per participant metric, we aggregate over all participants by the use of normalized
entropy. A healthy discussion, in which every participant interacts with every other
participant would thus be characterized by maximum entropy. Our approach could
explore the use of other metrics from the area of social network analysis, or aggregate
per participant metrics differently.

Our metrics of the third dimension, communication dynamics, focus on the quan-
titative measurements of a discussion, such as the number of exchanged messages,
their length, time and interestingness. Our approach approximates interestingness
as the degree of exposure to actors in the bug tracking system. For this purpose
we use the notification list, on which participants can sign up to be notified when
the information on an issue changes. By design of the issue tracking system, every
participant in a discussion is automatically put on the notification list. Furthermore,
issues might be interesting to actors, but actors might decline to sign up on the
notification list, e.g., to avoid additional email traffic.

Our metrics of the fourth dimension, workflow, strongly focusses on the workflow
activities that are recorded by the issue tracking system (Čubranić and Murphy 2003),
which follow the life of an issue report from creation to closure. However, we can not
observe any workflow activity beyond those recorded in the issue tracking system.
While some issue tracking systems, such as FIREFOX record an extensive set of
workflow activities, our manual inspection of the data revealed that the workflow
in the ECLIPSE bug tracking system is mostly concerned with activities related to
issue management.

For all dimensions, our approach is limited by capturing only a small subset of pos-
sible metrics. Using the same line of work, we could extend the set of metrics of social
interaction to accommodate and explore further hypotheses of relations between
social interaction and post-release defects, beyond those presented in this work.

In order to judge whether the models M1 to M5 obtained through our hierarchical
modelling approach describe valid relationships, rather than random observations

Empir Software Eng (2013) 18:375–431 411

in the data, we have carried out tests to judge the possible overfitting of every
statistical model (the test is described in detail in Section 4.3). The only instance
of overfitting we have observed was caused by the inclusion of experience metrics
CON1-CON3 in model M5 for both projects, and across all releases. As a result,
we have removed the experience metric from our hierarchical modelling approach
and performed comparisons of models across releases and projects, as well as the
discussions of results based on the most complete model, which does not suffer from
overfitting: Model M4.

9.2 Internal Validity

The assessment of internal validity deals with the concern that there may be other
plausible hypotheses that explain our findings. Furthermore, can we show that there
is a cause and effect relation between the processes captured through our metrics of
social interaction, and post-release defects?

Our approach uses regression models to put a set of regression variables (our
metrics of social interaction) into a relation with a dependent variable (post-release
defects). The effect of each variable is described through odds ratios. However, odds
ratios describe only the magnitude and direction a unit change of the independent
variable will have on the dependent variable, while keeping all other variables
constant. Second, we can only observe correlation through statistical models, not
causation. As such, all observations that we report on, even though they describe
statistically significant connections, denote that we observed a co-occurrence of
certain properties. In order to investigate possible causal effects, we would need to
carry out a root-cause analysis along each variable.

For each observation we attempt to give an intuitive rationale for that particular
connection. Where applicable, we carried out a manual inspection of our collected
data with a specific observation in mind. However, there may be plausible rival
hypotheses to explain our observations. Our work builds the basis for future in-
vestigations, by identifying a number of statistically significant connections between
social interactions and software quality. At the same time, some of our observations
confirm findings of previous studies: code churn being closely tied to post-release
defects (Nagappan and Ball 2007) and the spread of changes being connected to
post-release defects (Hassan 2009).

9.3 External Validity

The assessment of external validity evaluates to which extent generalization from
the results of our study are possible. We have performed two case studies on large-
scale open-source software systems with different domains: ECLIPSE is an integrated
development environment, FIREFOX is a web-browser. In addition, we have studied
multiple releases of each software system to further reduce threats to external
validity. However, since processes and practices differ greatly between open-source
development and commercial development, our observations might not generalize
to industrial settings. We believe, that the approach described in this paper, together
with the provided resources, can be readily adopted to other projects, as long as these
projects provide records that allow to establish traceability links between the source
code and issue tracking system.

412 Empir Software Eng (2013) 18:375–431

9.4 Reliability

The assessment of reliability of our study refers to the degree to which someone
analyzing the data presented in this work would reach the same results or conclu-
sions. We believe that the reliability of our study is very high. Our data is derived
from publicly available source control and issue tracking systems. Additionally,
Appendix A provides the underlying source code and datasets of all analyses carried
out in this paper, to enable others to replicate and extend our work.

10 Conclusions and Future Possibilities

In this study we investigated the impact of social interaction metrics (measured
from discussions on issues mined from issue tracking systems) on software quality,
expressed through their impact on post-release defects. Our results illustrate the
relationships between the regression variables contained in four different dimensions
of social interactions metrics (discussion contents, social structures, communication
dynamics, and workflow) and the risk of post-release defects. We expressed these
relationships both, as odds ratios in logarithmic space, as well as their relative impact
through a separate statistical analysis, to give the reader a better feeling for the
direction and magnitude of the effect of each variable.

Our results not only confirm the consistent relationship between code churn and
increased risk of post-release defects presented by previous research in this area, but
also establish a set of metrics that might be equally valuable for defect prediction. In
particular we found that the number of source code snippets discussed by developers
and users (NSOURCE) are related to an increased risk of post-release defects.
This finding is consistent across all releases and projects studied. Further research
is needed to investigate the intricacies of this connection, e.g., are code examples
needed for meaningful discussions of more complex or error-prone code changes
Other metrics that were consistently connected to an increased risk of post-release
defects include the spread of changes proposed through patches (PATCHS), the
variability of interestingness (INTE), as well as variability of workflow (WAE).

At the same time, our study presented metrics that were consistent across several
releases of the same project, but not across different projects. These include the
overall number of stack traces discussed (NTRACES), information flow effectivity
(SNACENT), and overall workflow activities (WA).

In addition, our findings demonstrate that a combination of both, source-metrics
based models and social metrics based models yields a higher explanatory power
than either of the models on its own. As a result we conjecture that models based on
social interaction metrics not only explain a similar amount of deviance as traditional
models, which use source-code based product and process metrics, but can be used to
complement traditional models to obtain higher explanatory power than each model
taken on its own.

We feel that our findings confirm the value of information about social interaction
among community members of a software for software engineering research commu-
nity. This establishes social information metrics as a promising direction to explore
for future research in defect prediction and software maintenance.

Empir Software Eng (2013) 18:375–431 413

Acknowledgements We want to thank Audris Mockus of Avaya Labs and the anonymous review-
ers of ICPC ’10 for their many helpful comments on earlier revisions of this study.

Appendix A: Repeatability of our Work

We have carried out most of our statistical analyses in a statistical tool called
R, which is a widely used open-source implementation of the commercial S
programming language, originally developed by John Chambers at Bell Labs.
For further information and downloads, we direct our interested reader to
http://cran.r-project.org/. In order to provide a common ground for future research
in this area, and to enable repeatability of our work, we present the source code
for all our analyses carried out in this study in this Appendix. In addition to the
R scripts, we provide the datasets for both case studies under the following URL:
http://sailhome.cs.queensu.ca/replication/social-interactions/.

Case Study One: ECLIPSE

#−−−
F i l e : A n a l y s i s _ECLIPSE . R
Date : December , 2 0 1 0

#−−−
Load R e q u i r e d L i b r a r i e s
l i b r a r y (Design)
l i b r a r y (B iod iver s i tyR)
l i b r a r y (ggp lo t2)

#−−−
Load ECLIPSE d a t a s e t
d1 ← read . csv (’ emse−data−e c l i p s e −3 .0 . c sv ’)

#−−−
D e s c r i p t i v e S t a t i s t i c s (T a b l e 2)
means ← l a p p l y (d1[,− c (1 , 2 , 2 8 , 2 9 , 3 0)] , FUN=mean)
sds ← l a p p l y (d1[,− c (1 , 2 , 2 8 , 2 9 , 3 0)] , FUN=sd)
maxs ← l a p p l y (d1[,− c (1 , 2 , 2 8 , 2 9 , 3 0)] , FUN=max)
mins ← l a p p l y (d1[,− c (1 , 2 , 2 8 , 2 9 , 3 0)] , FUN=min)
skews ← l a p p l y (d1[,− c (1 , 2 , 2 8 , 2 9 , 3 0)] , FUN=skewness)

You c a n a l s o i n v e s t i g a t e k u r t o s i s by c a l l i n g
k u r t o s e s ← l a p p l y (d1 [, − c (1 , 2 , 2 8 , 2 9 , 3 0)] , FUN= k u r t o s i s)

d e s c r i p t i v e ← cbind (Mean=means , SD=sds , Min=mins ,
Max=maxs , Skew=skews)

x t a b l e (d e s c r i p t i v e)
#−−−
C o r r e l o g r a m (F i g u r e 3)

F i r s t , we c r e a t e a h e l p e r f u n c t i o n t o r e c o r d t h e p− v a l u e s o f
t h e c o r r e l a t i o n t e s t s
cor . pva lues ← f u n c t i o n (X) {

nc ← ncol (X)
r e s ← matr ix (0 , nc , nc)

http://cran.r-project.org/
http://sailhome.cs.queensu.ca/replication/social-interactions/

414 Empir Software Eng (2013) 18:375–431

f o r (i in 2 : nc) {
f o r (j in 1 : (i − 1)) {

r e s [i , j] ← r e s [j , i] ← cor . t e s t (X[, i] , X[, j])
$p . value

}
}

r e s
}

We s a v e t h e a c t u a l c o r r e l a t i o n v a l u e s i n c
c ← cor (d1 [, c (4 , 6 , 7 , 9 , 1 0 , 1 2 , 1 3 , 1 5 , 1 6 , 1 7 , 1 8 , 1 9 , 2 0 , 2 2 , 2 3 , 2 4 ,

2 7 , 3 3 , 3 4 , 3 7 , 3 8)])

We u s e o u r new f u n c t i o n t o s a v e t h e c o r r e l a t i o n p− v a l u e s
in p

p ← cor . pva lues (d1 [, c (4 , 6 , 7 , 9 , 1 0 , 1 2 , 1 3 , 1 5 , 1 6 , 1 7 , 1 8 , 1 9 , 2 0 ,
2 2 , 2 3 , 2 4 , 2 7 , 3 3 , 3 4 , 3 7 , 3 8)])

A h e l p e r f u n c t i o n t o t r a n s l a t e p− l e v e l s i n t o s t a r s
s t a r s ← as . c h a r a c t e r (symnum(p , c u t p o i n t s =c (0 , 0 . 0 0 1 , 0 . 0 1 ,

0 . 0 5 , 1) ,
symbols=c (’ ∗∗∗ ’ , ’ ∗∗ ’ , ’ ∗ ’ , ’ ’) ,
legend=F))

T r a n s f o r m d a t a m o l t e n . d1 ← c b i n d (m e l t (c) , s t a r s) names (m o l t e n . d1) ←
c (" M1 " , "M2 " , " c o r r " , " p v a l u e ") x ←
ggp lo t (molten . d1 , aes (M1, M2, f i l l =c or r))

mi . i d s ← subse t (molten . d1 , M1 == M2)
mi . lower ← subse t (molten . d1 [lower . t r i (c) ,] , M1 ! = M2)
mi . upper ← subse t (molten . d1 [upper . t r i (c) ,] , M1 ! = M2)

Now p l o t j u s t t h e s e v a l u e s , a d d i n g l a b e l s (geom_ t e x t)
(p1 ← x + geom_ t i l e (data=mi . lower) +

geom_ t e x t (data=mi . lower , aes (l a b e l =pas te (pvalue)))
)
meas ← as . c h a r a c t e r (unique (molten . d1$M2))

W r i t e t o a PDF f i l e p d f (f i l e =" f i g u r e _ 1 . p d f " , h e i g h t = 1 0 ,
width =18) (p2 ← p1 + s c a l e _ co lour _ i d e n t i t y () +

s c a l e _ f i l l _ grad ientn (
c o l o u r s = c (" red " , " white " , " blue ") ,
l i m i t s =c (1 , −1)) +

s c a l e _x_ d i s c r e t e (
l i m i t s =meas [l eng th (meas) : 1]) + # f l i p t h e x a x i s

s c a l e _y_ d i s c r e t e (
l i m i t s =meas)

)

dev . o f f ()

#−−−
#−−−

S t e p w i s e A n a l y s i s o f V a r i a n c e I n f l a t i o n F a c t o r s (VIF)

(T a b l e 3)

S t e p one : S t a r t w i t h f u l l model model ← glm (p o s t >0 ∼
l o g (1 +NSOURCE) + l o g (1 +NSCOM)

Empir Software Eng (2013) 18:375–431 415

+ log (1+NPATCH) + log (1+PATCHS) + log (1+NTRACE)
+ log (1+TRACES) + log (1+NLINK) + log (1+NDEVS)
+ log (1+NUSERS) + log (1+SNACENT) + log (1+NMSG)
+ log (1+REPLY) + log (1+REPLYE) + log (1+DLEN)
+ log (1+DLENE) + log (1+INT) + log (1+INTE)
+ log (1+WA) + log (1+WAE)
, data=d1 , fami ly =binomial ())

summary (model)
v i f (model)

Remove NMSG
model ← glm (post >0 ∼ log (1+NSOURCE) + log (1+NSCOM)

+ log (1+NPATCH) + log (1+PATCHS) + log (1+NTRACE)
+ log (1+TRACES) + log (1+NLINK) + log (1+NDEVS)
+ log (1+NUSERS) + log (1+SNACENT) + log (1+REPLY)
+ log (1+REPLYE) + log (1+DLEN) + log (1+DLENE)
+ log (1+INT) + log (1+INTE) + log (1+WA)
+ log (1+WAE)
, data=d1 , fami ly =binomial ())

summary (model)
v i f (model)

Remove SNACENT
model ← glm (post >0 ∼ log (1+NSOURCE) + log (1+NSCOM)

+ log (1+NPATCH) + log (1+PATCHS) + log (1+NTRACE)
+ log (1+TRACES) + log (1+NLINK) + log (1+NDEVS)
+ log (1+NUSERS) + log (1+REPLY) + log (1+REPLYE)
+ log (1+DLEN) + log (1+DLENE) + log (1+INT)
+ log (1+INTE) + log (1+WA) + log (1+WAE)
, data=d1 , fami ly =binomial ())

summary (model)
v i f (model)

#−−−
S t e p w i s e H i e r a r c h i c a l M o d e l l i n g (T a b l e 4)
#
H e l p e r f u n c t i o n t o c o m p u t e o d d s r a t i o s
l r e g . or ← f u n c t i o n (model)

{
l r e g . c o e f f s ← coef (summary (model))
l c i ← exp (l r e g . c o e f f s [, 1] − 1 . 9 6 ∗ l r e g . c o e f f s [, 2])
or ← exp (l r e g . c o e f f s [, 1])
u c i ← exp (l r e g . c o e f f s [, 1] + 1 . 9 6 ∗ l r e g . c o e f f s [, 2])
l r e g . or ← cbind (l c i , or , u c i)
l r e g . or

}

B u i l d B a s e l i n e Model
b a s e l i n e ← glm ((post >0) ∼ log (1+CHURN) , data=d1 ,

fami ly =binomial ())
summary (b a s e l i n e)
deviancepercentage (base l ine ,

data=d1 [, c (4 , 6 , 7 , 9 , 1 0 , 1 2 , 1 3 , 1 5 , 1 6 , 1 7 , 1 8 , 1 9 ,
2 0 , 2 2 , 2 3 , 2 4 , 2 7 , 3 3 , 3 4 , 3 7 , 3 8)])

l r e g . or (b a s e l i n e)

Add D i m e n s i o n 1

416 Empir Software Eng (2013) 18:375–431

model1 ← glm ((post >0) ∼ log (1+CHURN) + log (1+NSOURCE)
+ log (1+NTRACE) + log (1+NPATCH) + log (1+NSCOM)
+ log (1+PATCHS) + log (1+TRACES) + log (1+NLINK)
, data=d1 , fami ly =binomial ())

summary (model1)
deviancepercentage (model1 ,

data=d1 [, c (4 , 6 , 7 , 9 , 1 0 , 1 2 , 1 3 , 1 5 , 1 6 , 1 7 , 1 8 , 1 9
, 2 0 , 2 2 , 2 3 , 2 4 , 2 7 , 3 3 , 3 4 , 3 7 , 3 8)])

Compare Model 1 t o B a s e l i n e
anova (base l ine , model1 , t e s t =" Chisq ")
l r e g . or (model1)

Add D i m e n s i o n 2
model2 ← glm ((post >0) ∼ log (1+CHURN)

+ log (1+NSOURCE) + log (1+NTRACE) + log (1+NPATCH)
+ log (1+NSCOM) + log (1+PATCHS) + log (1+TRACES)
+ log (1+NLINK) + log (1+NPART) + log (1+NDEVS)
+ log (1+NUSERS)
, data=d1 , fami ly =binomial ())

summary (model2)
deviancepercentage (model2 ,

data=d1 [, c (4 , 6 , 7 , 9 , 1 0 , 1 2 , 1 3 , 1 5 , 1 6 , 1 7 , 1 8 , 1 9 ,
2 0 , 2 2 , 2 3 , 2 4 , 2 7 , 3 3 , 3 4 , 3 7 , 3 8)])

Compare Model 2 t o Model 1
anova (model1 , model2 , t e s t =" Chisq ")
l r e g . or (model2)

Add D i m e n s i o n 3
model3 ← glm ((post >0) ∼ log (1+CHURN)

+ log (1+NSOURCE) + log (1+NTRACE) + log (1+NPATCH)
+ log (1+NSCOM) + log (1+PATCHS) + log (1+TRACES)
+ log (1+NLINK) + log (1+NPART) + log (1+NDEVS)
+ log (1+NUSERS) + log (1+REPLY) + log (1+REPLYE)
+ log (1+DLEN) + log (1+DLENE) + log (1+INT)
+ log (1+INTE)
, data=d1 , fami ly =binomial ())

summary (model3)
deviancepercentage (model3 ,

data=d1 [, c (4 , 6 , 7 , 9 , 1 0 , 1 2 , 1 3 , 1 5 , 1 6 , 1 7 , 1 8 , 1 9 ,
2 0 , 2 2 , 2 3 , 2 4 , 2 7 , 3 3 , 3 4 , 3 7 , 3 8)])

Compare Model 3 t o Model 2
anova (model2 , model3 , t e s t =" Chisq ")
l r e g . or (model3)

Add D i m e n s i o n 4
model4 ← glm ((post >0) ∼ log (1+CHURN)

+ log (1+NSOURCE) + log (1+NTRACE) + log (1+NPATCH)
+ log (1+NSCOM) + log (1+PATCHS) + log (1+TRACES)
+ log (1+NLINK) + log (1+NPART) + log (1+NDEVS)
+ log (1+NUSERS) + log (1+REPLY) + log (1+REPLYE)
+ log (1+DLEN) + log (1+DLENE)
+ log (1+INT) + log (1+INTE)
+ log (1+WA) + log (1+WAE)
, data=d1 , fami ly =binomial ())

summary (model4)
deviancepercentage (model4 ,

data=d1 [, c (4 , 6 , 7 , 9 , 1 0 , 1 2 , 1 3 , 1 5 , 1 6 , 1 7 , 1 8 , 1 9 ,

Empir Software Eng (2013) 18:375–431 417

2 0 , 2 2 , 2 3 , 2 4 , 2 7 , 3 3 , 3 4 , 3 7 , 3 8)])

Compare Model 4 t o Model 3
anova (model3 , model4 , t e s t =" Chisq ")
l r e g . or (model4)

Add D i m e n s i o n CON1−CON3
model5 ← glm ((post >0) ∼ log (1+CHURN)

+ log (1+NSOURCE) + log (1+NTRACE) + log (1+NPATCH)
+ log (1+NSCOM) + log (1+PATCHS) + log (1+TRACES)
+ log (1+NLINK) + log (1+NPART) + log (1+NDEVS)
+ log (1+NUSERS) + log (1+REPLY) + log (1+REPLYE)
+ log (1+DLEN) + log (1+DLENE) + log (1+INT)
+ log (1+INTE) + log (1+WA) + log (1+WAE)
+ CON1 + CON2 + CON3
, data=d1 , fami ly =binomial ())

summary (model4)
deviancepercentage (model5 ,

data=d1 [, c (4 , 6 , 7 , 9 , 1 0 , 1 2 , 1 3 , 1 5 , 1 6 , 1 7 , 1 8 , 1 9 ,
2 0 , 2 2 , 2 3 , 2 4 , 2 7 , 3 3 , 3 4 , 3 7 , 3 8)])

Compare Model 5 t o Model 4
anova (model4 , model5 , t e s t =" Chisq ")
l r e g . or (model5)

P l o t Odds R a t i o s f o r d e v e l o p e r s by d e v e l o p e r i n d e x
F i g u r e 4
ors ← l r e g . or (model5 [, 2])
p l o t (ors [18 −999] , type=" l "

, x lab=" Developer Index "
, y lab=" R e l a t i v e Impact (Odds Rat ios) ")

#−−−
C o m b i n a t i o n o f T r a d i t i o n a l M o d e l s and New M o d e l s
S e c t i o n 7
mtrad ← glm ((post >0) ∼ log (1+ pre)

+ log (1+MLOC_max) + log (1+PAR_max)
+ log (1+PAR_sum) + log (1+TLOC)
, data=d1 , fami ly =binomial ())

summary (mtrad)
deviancepercentage (mtrad , data=d1)

T a b l e 10
x t a b l e (mtrad)

Add new M e t r i c s
maug ← glm ((post >0) ∼ log (1+ pre)

+ log (1+NSOURCE) + log (1+NPATCH)
+ log (1+PATCHS) + log (1+NLINK)
+ log (1+REPLYE) + log (1+DLEN) + log (1+DLENE)
+ log (1+INT) + log (1+INTE)
+ log (1+WA)
+ log (1+MLOC_max) + log (1+PAR_max)
+ log (1+PAR_sum) + log (1+TLOC)
+ CON1 + CON2 + CON3
, data=d1 , fami ly =binomial ())

summary (maug)
deviancepercentage (maug , data=d1)

T a b l e 10

418 Empir Software Eng (2013) 18:375–431

x t a b l e (maug)

Compare m t r a d t o maug
anova (mtrad , maug , t e s t =" Chisq ")

#−−−
ANALYSIS OF ENTROPY (S e c t i o n 6)

A n a l y s i s o f REPLYE
E x t r a c t p o s t r e l e a s e d e f e c t s and r e p l y t i m e e n t r o p y f r o m

dataframe
no_ post ← subse t (d1 [, c (4 , 2 3)] , post =0)
yes _ post ← subse t (d1 [, c (4 , 2 3)] , post >0)

mean(no_ post $REPLYE)
mean(yes _ post $REPLYE)

P e r f o r m a Mann−W h i t n e y U t e s t t o s e e ,

w h e t h e r d i f f e r e n c e i n means i s s t a t i s t i c a l l y s i g n i f i c a n t
wi lcox . t e s t (no_ post $REPLYE, yes _ post $REPLYE, paired=FALSE)

#−−−
A n a l y s i s o f WAE
E x t r a c t p o s t r e l e a s e d e f e c t s and r e p l y t i m e e n t r o p y f r o m d a t a f r a m e
no_ post ← subse t (d1 [, c (4 , 3 8)] , post =0)
yes _ post ← subse t (d1 [, c (4 , 3 8)] , post >0)

mean(no_ post $WAE)
mean(yes _ post $WAE)

P e r f o r m a Mann−W h i t n e y U t e s t t o s e e ,
w h e t h e r d i f f e r e n c e i n means i s s t a t i s t i c a l l y s i g n i f i c a n t
wi lcox . t e s t (no_ post $WAE, yes _ post $WAE, paired=FALSE)

Case Study Two: Firefox

#−−−
F i l e : A n a l y s i s _FIREFOX . R
Date : December , 2 0 1 0

#−−−
Load d a t a
d1 ← read . csv (’ output−moz−3.0−6months . csv ’)

#−−−

Load R e q u i r e d L i b r a r i e s
l i b r a r y (Design)
l i b r a r y (B iod iver s i tyR)
l i b r a r y (ggp lo t2)

#−−−
STEP 1 : D e s c r i p t i v e S t a t i s t i c s (T a b l e 5)
means ← l a p p l y (d1[,− c (1 , 2 , 2 8 , 2 9 , 3 0)] , FUN=mean)
sds ← l a p p l y (d1[,− c (1 , 2 , 2 8 , 2 9 , 3 0)] , FUN=sd)
maxs ← l a p p l y (d1[,− c (1 , 2 , 2 8 , 2 9 , 3 0)] , FUN=max)
mins ← l a p p l y (d1[,− c (1 , 2 , 2 8 , 2 9 , 3 0)] , FUN=min)
skews ← l a p p l y (d1[,− c (1 , 2 , 2 8 , 2 9 , 3 0)] , FUN=skewness)

Empir Software Eng (2013) 18:375–431 419

d e s c r i p t i v e ← cbind (Mean=means , SD=sds , Min=mins ,
Max=maxs , Skew=skews)

x t a b l e (d e s c r i p t i v e)
#−−−

#−−−
C o r r e l o g r a m
F i g u r e 5
cor . pva lues ← f u n c t i o n (X) {

nc ← ncol (X)
r e s ← matr ix (0 , nc , nc)
f o r (i in 2 : nc) {

f o r (j in 1 : (i − 1)) {
r e s [i , j] ← r e s [j , i] ← cor . t e s t (X[, i] ,

X[, j]) $p . value
}

}
r e s

}

FIREFOX
c ← cor (d1 [, c (4 , 6 , 7 , 9 , 1 0 , 1 5 , 1 6 , 1 7 , 1 8 , 1 9 ,

2 0 , 2 2 , 2 3 , 2 4 , 2 7 , 3 3 , 3 4 , 3 7 , 3 8)])
p ← cor . pva lues (d1 [, c (4 , 6 , 7 , 9 , 1 0 , 1 5 , 1 6 , 1 7 , 1 8 , 1 9 ,

2 0 , 2 2 , 2 3 , 2 4 , 2 7 , 3 3 , 3 4 , 3 7 , 3 8)])

s t a r s ← as . c h a r a c t e r (symnum(p , c u t p o i n t s =c (0 , 0 . 0 0 1 , 0 . 0 1 ,
0 . 0 5 , 1) ,

symbols=c (’ ∗∗∗ ’ , ’ ∗∗ ’ , ’ ∗ ’ , ’ ’) ,
legend=F))

molten . d1 ← cbind (melt (c) , s t a r s) names (molten . d1) ←
c ("M1" , "M2" , " c or r " , " pvalue ") x ← ggp lo t (molten . d1 ,
aes (M1, M2, f i l l =c or r))

mi . i d s ← subse t (molten . d1 , M1 == M2)
mi . lower ← subse t (molten . d1 [lower . t r i (c) ,] , M1 ! = M2)
mi . upper ← subse t (molten . d1 [upper . t r i (c) ,] , M1 ! = M2)

We now p l o t j u s t t h e s e v a l u e s , a d d i n g l a b e l s (geom_ t e x t)
(p1 ← x + geom_ t i l e (data=mi . lower) +

geom_ t e x t (data=mi . lower , aes (l a b e l =pas te (pvalue)))
)
meas ← as . c h a r a c t e r (unique (molten . d1$M2))

pdf (f i l e =" c o r r e l a t i o n s _ f i r e f o x . pdf " , he igh t =10 , width =18)

(p2 ← p1 + s c a l e _ co lour _ i d e n t i t y () +
s c a l e _ f i l l _ grad ientn (

c o l o u r s = c (" red " , " white " , " blue ") ,

l i m i t s =c (1 , −1)) +
s c a l e _x_ d i s c r e t e (

l i m i t s =meas [l eng th (meas) : 1]) + # f l i p t h e x a x i s
s c a l e _y_ d i s c r e t e (l i m i t s =meas)

)

dev . o f f ()

420 Empir Software Eng (2013) 18:375–431

#−−−
VIF A n a l y s i s : FIREFOX
T a b l e 6
model ← glm (post >0 ∼ log (1+NSOURCE) + log (1+NSCOM)
+ log (1+NPATCH) + log (1+PATCHS) + log (1+NLINK)
+ log (1+NDEVS) + log (1+NUSERS) + log (1+SNACENT)
+ log (1+NMSG) + log (1+REPLY) + log (1+REPLYE)
+ log (1+DLEN) + log (1+DLENE) + log (1+INT)
+ log (1+INTE) + log (1+WA) + log (1+WAE) ,
data=d1 , fami ly =binomial ())

v i f (model)

REMOVE NMSG
model ← glm (post >0 ∼ log (1+NSOURCE) + log (1+NSCOM)
+ log (1+NPATCH) + log (1+PATCHS) + log (1+NLINK)
+ log (1+NDEVS) + log (1+NUSERS) + log (1+SNACENT)
+ log (1+REPLY) + log (1+REPLYE) + log (1+DLEN)
+ log (1+DLENE) + log (1+INT) + log (1+INTE)
+ log (1+WA) + log (1+WAE) , data=d1 , fami ly =binomial ())
v i f (model)

REMOVE NPATCH
model ← glm (post >0 ∼ log (1+NSOURCE) + log (1+NSCOM)
+ log (1+PATCHS) + log (1+NLINK) + log (1+NDEVS)
+ log (1+NUSERS) + log (1+SNACENT) + log (1+REPLY)
+ log (1+REPLYE) + log (1+DLEN) + log (1+DLENE)
+ log (1+INT) + log (1+INTE) + log (1+WA)
+ log (1+WAE) , data=d1 , fami ly =binomial ())
v i f (model)

REMOVE NDEVS
model ← glm (post >0 ∼ log (1+NSOURCE) + log (1+NSCOM)
+ log (1+PATCHS) + log (1+NLINK) + log (1+NUSERS)
+ log (1+SNACENT) + log (1+REPLY) + log (1+REPLYE)
+ log (1+DLEN) + log (1+DLENE) + log (1+INT)
+ log (1+INTE) + log (1+WA) + log (1+WAE) ,
data=d1 , fami ly =binomial ())
v i f (model)

#−−−
S t e p w i s e H i e r a r c h i c a l A n a l y s i s b e g i n s b e l o w
T a b l e 7

H e l p e r f u n c t i o n t o c o m p u t e o d d s r a t i o s
l r e g . or ← f u n c t i o n (model)

{
l r e g . c o e f f s ← coef (summary (model))
l c i ← exp (l r e g . c o e f f s [, 1] − 1 . 9 6 ∗ l r e g . c o e f f s [, 2])
or ← exp (l r e g . c o e f f s [, 1])
u c i ← exp (l r e g . c o e f f s [, 1] + 1 . 9 6 ∗ l r e g . c o e f f s [, 2])
l r e g . or ← cbind (l c i , or , u c i)
l r e g . or

}

#−−−
MOZILLA − S e l e c t e d M e a s u r e s
names (d1 [, c (4 , 6 , 7 , 1 0 , 1 5 , 1 6 , 1 8 , 1 9 , 2 2 , 2 3 , 2 4 , 2 7 , 3 3 , 3 4 ,

3 7 , 3 8)])

Empir Software Eng (2013) 18:375–431 421

#−−−
B u i l d B a s e l i n e Model MOZILLA
b a s e l i n e ← glm ((post >0) ∼ log (1+CHURN) , data=d1 ,

fami ly =binomial ())
summary (b a s e l i n e)
deviancepercentage (base l ine ,

data=d1 [, c (4 , 6 , 7 , 1 0 , 1 5 , 1 6 , 1 8 , 1 9 ,
2 2 , 2 3 , 2 4 , 2 7 , 3 3 , 3 4 , 3 7 , 3 8)])

l r e g . or (b a s e l i n e)

#−−−
Add D i m e n s i o n 1
model1 ← glm ((post >0) ∼ log (1+CHURN)

+ log (1+NSOURCE) + log (1+NSCOM) + log (1+PATCHS)
+ log (1+NLINK)

, data=d1 , fami ly =binomial ())
summary (model1)
deviancepercentage (model1 ,

data=d1 [, c (4 , 6 , 7 , 9 , 1 0 , 1 2 , 1 3 , 1 5 , 1 6 , 1 7 , 1 8 , 1 9
, 2 0 , 2 2 , 2 3 , 2 4 , 2 7 , 3 3 , 3 4 , 3 7 , 3 8)])

Compare Model 1 t o B a s e l i n e
anova (base l ine , model1 , t e s t =" Chisq ")
l r e g . or (model1)

#−−−
Add D i m e n s i o n 2 n
model2 ← glm ((post >0) ∼ log (1+CHURN)

+ log (1+NSOURCE) + log (1+NSCOM) + log (1+PATCHS)
+ log (1+NLINK)
+ log (1+NPART) + log (1+NUSERS) + log (1+SNACENT)
, data=d1 , fami ly =binomial ())

summary (model2)
deviancepercentage (model2 ,

data=d1 [, c (4 , 6 , 7 , 9 , 1 0 , 1 2 , 1 3 , 1 5 , 1 6 , 1 7 , 1 8 , 1 9 ,
2 0 , 2 2 , 2 3 , 2 4 , 2 7 , 3 3 , 3 4 , 3 7 , 3 8)])

Compare Model 2 t o Model 1
anova (model1 , model2 , t e s t =" Chisq ")
l r e g . or (model2)

#−−−
Add D i m e n s i o n 3
model3 ← glm ((post >0) ∼ log (1+CHURN)

+ log (1+NSOURCE) + log (1+NSCOM) + log (1+PATCHS)
+ log (1+NLINK)
+ log (1+NPART) + log (1+NUSERS) + log (1+SNACENT)
+ log (1+REPLY) + log (1+REPLYE) + log (1+DLEN)
+ log (1+DLENE) + log (1+INT) + log (1+INTE)
, data=d1 , fami ly =binomial ())

summary (model3)
deviancepercentage (model3 ,

data=d1 [, c (4 , 6 , 7 , 9 , 1 0 , 1 2 , 1 3 , 1 5 , 1 6 , 1 7 , 1 8 , 1 9
, 2 0 , 2 2 , 2 3 , 2 4 , 2 7 , 3 3 , 3 4 , 3 7 , 3 8)])

Compare Model 3 t o Model 2
anova (model2 , model3 , t e s t =" Chisq ")
l r e g . or (model3)

422 Empir Software Eng (2013) 18:375–431

#−−−
Add D i m e n s i o n 4
model4 ← glm ((post >0) ∼ log (1+CHURN)

+ log (1+NSOURCE) + log (1+NSCOM) + log (1+PATCHS)
+ log (1+NLINK)
+ log (1+NPART) + log (1+NUSERS) + log (1+SNACENT)
+ log (1+REPLY) + log (1+REPLYE) + log (1+DLEN)
+ log (1+DLENE) + log (1+INT) + log (1+INTE)
+ log (1+WA) + log (1+WAE)
, data=d1 , fami ly =binomial ())

summary (model4)
deviancepercentage (model4 ,

data=d1 [, c (4 , 6 , 7 , 9 , 1 0 , 1 2 , 1 3 , 1 5 , 1 6 , 1 7 , 1 8 , 1 9 ,
2 0 , 2 2 , 2 3 , 2 4 , 2 7 , 3 3 , 3 4 , 3 7 , 3 8)])

Compare Model 4 t o Model 3
anova (model3 , model4 , t e s t =" Chisq ")
l r e g . or (model4)

#−−−
Add CON1 − CON3
model5 ← glm ((post >0) ∼ log (1+CHURN)

+ log (1+NSOURCE) + log (1+NSCOM) + log (1+PATCHS)
+ log (1+NLINK)
+ log (1+NPART) + log (1+NUSERS) + log (1+SNACENT)
+ log (1+REPLY) + log (1+REPLYE) + log (1+DLEN)
+ log (1+DLENE) + log (1+INT) + log (1+INTE)
+ log (1+WA) + log (1+WAE) + CON1 +CON2 +CON3
, data=d1 , fami ly =binomial ())

Compare Model 5 t o Model 4
anova (model4 , model5 , t e s t =" Chisq ")
l r e g . or (model5)

P l o t Odds R a t i o s f o r d e v e l o p e r s by d e v e l o p e r i n d e x
F i g u r e 4
ors ← l r e g . or (model5 [, 2])
p l o t (ors [18 −999] , type=" l "

, x lab=" Developer Index "
, y lab=" R e l a t i v e Impact (Odds Rat ios) ")

#−−−
ANALYSIS OF ENTROPY (S e c t i o n 6)

REPLYE A n a l y s i s

E x t r a c t p o s t r e l e a s e d e f e c t s and r e p l y t i m e e n t r o p y m e a s u r e s
from dataframe
no_ post ← subse t (d1 [, c (4 , 2 3)] , post =0)
yes _ post ← subse t (d1 [, c (4 , 2 3)] , post >0)

mean(no_ post $REPLYE)
mean(yes _ post $REPLYE)
P e r f o r m a Mann−W h i t n e y U t e s t t o s e e i f t h e
d i f f e r e n c e i n means i s s t a t i s t i c a l l y s i g n i f i c a n t
boxplot (no_ post $REPLYE, yes _ post $REPLYE)
wi lcox . t e s t (no_ post $REPLYE, yes _ post $REPLYE, paired=FALSE)

#−−−
INTE A n a l y s i s

Empir Software Eng (2013) 18:375–431 423

E x t r a c t p o s t r e l e a s e d e f e c t s and r e p l y t i m e e n t r o p y m e a s u r e s
from dataframe
no_ post ← subse t (d1 [, c (4 , 3 4)] , post =0)
yes _ post ← subse t (d1 [, c (4 , 3 4)] , post >0)

mean(no_ post $INTE)
mean(yes _ post $INTE)

P e r f o r m a Mann−W h i t n e y U t e s t t o s e e i f t h e d i f f e r e n c e
i n means i s s t a t i s t i c a l l y s i g n i f i c a n t
boxplot (no_ post $INTE, yes _ post $INTE)
wi lcox . t e s t (no_ post $INTE, yes _ post $INTE, paired=FALSE)

#−−−
DLENE A n a l y s i s

E x t r a c t p o s t r e l e a s e d e f e c t s and r e p l y t i m e e n t r o p y m e a s u r e s
from dataframe
no_ post ← subse t (d1 [, c (4 , 2 7)] , post =0)
yes _ post ← subse t (d1 [, c (4 , 2 7)] , post >0)

mean(no_ post $DLENE)
mean(yes _ post $DLENE)

P e r f o r m a Mann−W h i t n e y U t e s t t o s e e i f t h e d i f f e r e n c e
i n means i s s t a t i s t i c a l l y s i g n i f i c a n t
boxplot (no_ post $DLENE, yes _ post $DLENE)
wi lcox . t e s t (no_ post $DLENE, yes _ post $DLENE, paired=FALSE)

Modelling the Relative Effect of Regression Variables

mean_ e f f e c t ← f u n c t i o n (model , means) {
Y ← p r e d i c t (model , means)
e f f e c t s = l i s t ()
f o r (i in 1 : l eng th (means)) {

meansprime ← means
meansprime [[i]] ← meansprime [[i]] ∗ 1 . 2 0
Yprime ← p r e d i c t (model , meansprime)
e f f e c t s [names (meansprime [i])] ← (Yprime−Y)

}
re turn (e f f e c t s)

}

E c l i p s e 3 . 0
d1 ← read . csv (’ e c l i p s e −6mo−30−avg _ f i l e s . c sv ’)
model_ e c l i p s e _30 ← glm ((post >0) ∼ log (1+CHURN)

+ log (1+NSOURCE) + log (1+NTRACE) + log (1+NPATCH)
+ log (1+NSCOM) + log (1+PATCHS) + log (1+TRACES)
+ log (1+NLINK) + log (1+NPART) + log (1+NDEVS)
+ log (1+NUSERS) + log (1+REPLY) + log (1+REPLYE)
+ log (1+DLEN) + log (1+DLENE)
+ log (1+INT) + log (1+INTE)
+ log (1+WA) + log (1+WAE)
, data=d1 , fami ly =binomial ())

means ← l a p p l y (d1[,− c (1 , 2 , 2 8 , 2 9 , 3 0)] , FUN=mean)

t ← mean_ e f f e c t (model_ e c l i p s e _ 30 , means [3 : 3 8])

424 Empir Software Eng (2013) 18:375–431

ut ← s o r t (u n l i s t (t) , d e c r e a s i n g =TRUE)
c a t (s p r i n t f (" \ t %f \ t %s \ n" , ut , names (ut)))

E c l i p s e 3 . 1
d1 ← read . csv (’ output _ECLIPSE_3_ 1 . csv ’)
model_ e c l i p s e _31 ← glm (post >0 ∼ log (1+CHURN)

+ log (1+NSOURCE) + log (1+NSCOM)
+ log (1+NPATCH) + log (1+PATCHS)
+ log (1+NTRACE) + log (1+TRACES)
+ log (1+NLINK) + log (1+NUSERS)
+ log (1+SNACENT) + log (1+REPLY)
+ log (1+REPLYE) + log (1+DLEN)
+ log (1+DLENE) + log (1+INT)
+ log (1+INTE) + log (1+WA)
+ log (1+WAE) , data=d1 ,

fami ly =binomial ())

means ← l a p p l y (d1[,− c (1 , 2 , 2 8 , 2 9 , 3 0)] , FUN=mean)

t ← mean_ e f f e c t (model_ e c l i p s e _ 31 , means)
ut ← s o r t (u n l i s t (t) , d e c r e a s i n g =TRUE)
c a t (s p r i n t f (" \ t %f \ t %s \ n" , ut , names (ut)))

E c l i p s e 3 . 2
d1 ← read . csv (’ output _ECLIPSE_3_ 2 . csv ’)
model_ e c l i p s e _32 ← glm (post >0 ∼ log (1+CHURN)

+ log (1+NSOURCE) + log (1+NSCOM)
+ log (1+PATCHS) + log (1+NTRACE)
+ log (1+TRACES) + log (1+NLINK)
+ log (1+NDEVS) + log (1+NUSERS)
+ log (1+REPLY) + log (1+REPLYE)
+ log (1+DLEN) + log (1+DLENE)
+ log (1+INT) + log (1+INTE)
+ log (1+WA) + log (1+WAE) ,

data=d1 , fami ly =binomial ())

means ← l a p p l y (d1[,− c (1 , 2 , 2 8 , 2 9 , 3 0)] , FUN=mean)

t ← mean_ e f f e c t (model_ e c l i p s e _ 32 , means)
ut ← s o r t (u n l i s t (t) , d e c r e a s i n g =TRUE)
c a t (s p r i n t f (" \ t %f \ t %s \ n" , ut , names (ut)))

F i r e f o x 1 . 5
d1 ← read . csv (’ output _MOZILLA_1_ 5 . csv ’)
model_ f i r e f o x _15 ← glm (post >0 ∼ log (1+CHURN)

+ log (1+NSOURCE) + log (1+NSCOM)
+ log (1+NPATCH) + log (1+PATCHS)
+ log (1+NLINK) + log (1+NUSERS)
+ log (1+SNACENT) + log (1+REPLY)
+ log (1+REPLYE) + log (1+DLEN)
+ log (1+DLENE) + log (1+INT)
+ log (1+INTE) + log (1+WA) + log (1+WAE) ,

data=d1 , fami ly =binomial ())
means ← l a p p l y (d1[,− c (1 , 2 , 2 8 , 2 9 , 3 0)] , FUN=mean)

t ← mean_ e f f e c t (model_ f i r e f o x _ 15 , means)
ut ← s o r t (u n l i s t (t) , d e c r e a s i n g =TRUE)
c a t (s p r i n t f (" \ t %f \ t %s \ n" , ut , names (ut)))

F i r e f o x 2 . 0

Empir Software Eng (2013) 18:375–431 425

d1 ← read . csv (’ output _MOZILLA_2_ 0 . csv ’) model_ f i r e f o x _20 ←
glm (post >0 ∼ log (1+CHURN)

+ log (1+NSOURCE) + log (1+NSCOM)
+ log (1+PATCHS) + log (1+NLINK)
+ log (1+NUSERS) + log (1+SNACENT)
+ log (1+REPLY) + log (1+REPLYE)
+ log (1+DLEN) + log (1+DLENE)
+ log (1+INT) + log (1+INTE)
+ log (1+WA) + log (1+WAE) ,

data=d1 , fami ly =binomial ())

means ← l a p p l y (d1[,− c (1 , 2 , 2 8 , 2 9 , 3 0)] , FUN=mean)

t ← mean_ e f f e c t (model_ f i r e f o x _ 20 , means)
ut ← s o r t (u n l i s t (t) , d e c r e a s i n g =TRUE)
c a t (s p r i n t f (" \ t %f \ t %s \ n" , ut , names (ut)))

F i r e f o x 3 . 0
d1 ← read . csv (’ output−moz−3.0−6months . csv ’) model_ f i r e f o x _30 ←
glm ((post >0) ∼ log (1+CHURN)

+ log (1+NSOURCE) + log (1+NSCOM) + log (1+PATCHS)
+ log (1+NLINK) + log (1+NPART) + log (1+NUSERS)
+ log (1+SNACENT) + log (1+REPLY) + log (1+REPLYE)
+ log (1+DLEN) + log (1+DLENE) + log (1+INT)
+ log (1+INTE) + log (1+WA) + log (1+WAE) ,

data=d1 , fami ly =binomial ())

means ← l a p p l y (d1[,− c (1 , 2 , 2 8 , 2 9 , 3 0)] , FUN=mean)

t ← mean_ e f f e c t (model_ f i r e f o x _ 30 , means)
ut ← s o r t (u n l i s t (t) , d e c r e a s i n g =TRUE)
c a t (s p r i n t f (" \ t %f \ t %s \ n" , ut , names (ut)))

Appendix B: Summary of Hierarchical Models with β-coefficients

Table 17 Hierarchical analysis of logistic regression models along the four dimensions of social
interaction metrics for ECLIPSE 3.0

log(Yi) MB M1 M2 M3 M4 M5

CHURN 0.699 	 0.666 	 0.668 	 0.725 	 0.567 	 0.650 	

NSOURCE 0.229 	 0.230 	 0.248 	 0.248 	 0.222 	

NTRACE −0.102 −0.115 −0.063 −0.055 0.047
NPATCH −0.680 ◦ −0.678 ◦ −0.547 + −0.636 ◦ −0.536
NSCOM 0.086 0.077 0.096 0.082 0.095
PATCHS 1.101 ◦ 1.101 ◦ 1.049 ◦ 1.105 ◦ 1.260 •
TRACES 0.007 0.005 0.002 −0.005 −0.011
NLINK 0.246 	 0.208 • 0.204 • 0.222 • 0.203 +
NPART 0.395 0.461 0.651 0.657
NDEVS −0.323 −0.235 −0.415 −0.562
NUSERS −0.126 −0.095 −0.160 −0.101

426 Empir Software Eng (2013) 18:375–431

Table 17 continued

log(Yi) MB M1 M2 M3 M4 M5

REPLY 0.008 −0.006 −0.008
REPLYE −0.932 	 −1.086 	 −1.357 	

DLEN −0.029 −0.047 ◦ −0.057 +
DLENE 0.398 0.097 0.310
INT −0.081 • −0.086 • −0.016
INTE 0.045 0.006 0.116
WA 0.156 	 0.088 +
WAE 0.434 ◦ 0.336
CON1−3 Fig. 2 	

Chisq 559.01 	 698.5 	 700.15 731.5 	 752.3 	 1055.19 	

Dev.Expl. 10.71% 13.38% 13.41% 14.02% 14.41% 26.07%
DeltaChisq 139.48 1.652 31.357 20.28 302.87

Bold entries denote statistically significant coefficients with a p level lower than 0.1
	 p < 0.001, • p < 0.01, ◦ p < 0.05, + p < 0.1

Table 18 Hierarchical analysis of logistic regression models along the four dimensions of social
interaction metrics for ECLIPSE 3.1

log(Yi) MB M1 M2 M3 M4 M5

CHURN 1.883 	 1.744 	 1.735 	 1.659 	 1.192 	 1.354 	

NSOURCE 0.293 	 0.214 • 0.291 	 0.273 	 0.321 	

NSCOM −0.489 	 −0.515 	 −0.491 	 −0.535 	 −0.429 •
PATCHS 0.440 0.536 0.517 0.587 0.960
NPATCH 0.230 0.049 0.470 0.372 0.597
NTRACE −0.355 + −0.442 ◦ −0.404 ◦ −0.314 −0.251
TRACES 0.090 + 0.116 ◦ 0.146 • 0.087 + 0.095 +
NLINK −1.296 	 −1.311 	 −1.377 	 −1.429 	 −1.044 	

NUSERS 1.247 	 1.444 	 1.617 	 1.358 	

SNACENT −1.369 	 −1.943 	 −1.553 • −1.404 ◦
REPLY −0.028 + −0.086 	 −0.042 ◦
REPLYE 1.284 	 0.942 ◦ 0.922 ◦
DLEN −0.274 	 −0.333 	 −0.284 	

DLENE 3.304 	 1.881 	 1.104 ◦
INT 0.078 + 0.068 0.139 ◦
INTE 0.435 • 0.135 0.320 +
WA 0.537 	 0.343 	

WAE 1.367 	 1.286 	

CON1−3 n/a 	

χ2 1643.98 	 2134.46 	 2434.56 	 2644.3 	 2744.02 	 4288.3 	

Dev. Expl. 11.66% 15.15% 17.27% 18.75% 19.46% 30.41%

χ2 490.48 300.1 209.74 99.72 1544.28

Bold entries denote statistically significant coefficients with a p level lower than 0.1
	 p < 0.001, • p < 0.01, ◦ p < 0.05, + p < 0.1

Empir Software Eng (2013) 18:375–431 427

Table 19 Hierarchical analysis of logistic regression models along the four dimensions of social
interaction metrics for ECLIPSE 3.2

log(Yi) MB M1 M2 M3 M4 M5

CHURN 1.529 	 1.453 	 1.461 	 1.204 	 1.582 	 1.759 	

NSOURCE 0.689 	 0.659 	 0.714 	 0.721 	 0.639 	

NSCOM −0.558 	 −0.505 	 −0.573 	 −0.595 	 −0.720 	

PATCHS 0.465 0.422 0.499 0.583 0.734
NTRACE −0.544 ◦ −0.568 ◦ −0.372 −0.389 −0.504
TRACES 0.201 	 0.203 	 0.154 ◦ 0.167 • 0.124 +
NLINK 0.226 	 0.201 • 0.128 0.055 0.433 	

NDEVS −0.125 ◦ −0.206 • −0.243 	 −0.141
NUSERS 0.170 • 0.119 + 0.125 + −0.144
REPLY 0.002 0.028 ◦ 0.058 •
REPLYE 1.570 	 1.624 	 2.042 	

DLEN −0.153 	 −0.101 	 −0.053
DLENE −1.186 	 −0.614 + −1.896 	

INT 0.191 	 0.170 	 0.078
INTE 0.948 	 1.228 	 1.147 	

WA −0.317 	 −0.296 	

WAE −1.074 	 −1.358 	

CON1−3 n/a 	

χ2 1198.83 	 1355.13 	 1364.31 ◦ 1470.4 	 1521.04 	 3106.11 	

Dev. Expl. 7.84% 8.86% 8.92% 9.62% 9.95% 20.31%

χ2 156.3 9.18 106.09 50.64 1585.07

Bold entries denote statistically significant coefficients with a p level lower than 0.1
	 p < 0.001, • p < 0.01, ◦ p < 0.05, + p < 0.1

Table 20 Hierarchical analysis of logistic regression models along the four dimensions of social
interaction metrics for Mozilla FIREFOX 1.5

log(Yi) MB M1 M2 M3 M4 M5

CHURN 1.862 	 1.791 	 1.810 	 1.658 	 1.560 	 1.530 	

NSOURCE 0.150 	 0.098 ◦ 0.147 • 0.150 • 0.173 •
NSCOM 0.277 	 0.576 	 0.878 	 0.866 	 0.246
PATCHS −0.566 −0.740 −0.391 −0.314 −1.022
NLINK 0.070 ◦ 0.298 	 0.237 	 0.235 	 0.045
NPART −0.745 	 −0.382 −0.445 + 0.662 +
NUSERS 0.139 ◦ 0.053 0.066 −0.413 	

SNACENT 1.07 2.002 2.679 + −1.965
REPLY 0.053 ◦ 0.049 ◦ 0.047
REPLYE −0.923 + −0.956 ◦ −2.896 	

DLEN −0.155 	 −0.129 • 0.039
DLENE −2.593 	 −2.519 	 −3.086 	

INT −0.097 ◦ −0.119 ◦ −0.333 	

INTE 1.423 	 0.794 ◦ 1.387 ◦
WA −0.035 −0.057
WAE 1.433 • 1.542 ◦
CON1−3 	

χ2 1269.46 	 1365.92 	 1432.34 	 1583.29 	 1593.34 	 2760.34 	

Dev.Expl 14.75% 15.87% 16.64% 18.40% 18.51% 32.07%

χ2 96.46 66.42 150.95 10.05 1167

Bold entries denote statistically significant coefficients with a p level lower than 0.1
	 p < 0.001, • p < 0.01, ◦ p < 0.05, + p < 0.1

428 Empir Software Eng (2013) 18:375–431

Table 21 Hierarchical analysis of logistic regression models along the four dimensions of social
interaction metrics for Mozilla FIREFOX 2.0

log(Yi) MB M1 M2 M3 M4 M5

CHURN 1.467 	 1.465 	 1.493 	 1.013 	 0.972 	 1.426 	

NSOURCE −0.027 −0.035 0.018 0.019 0.070
NSCOM 0.114 0.102 0.437 • 0.437 • 0.040
PATCHS 0.797 0.768 1.181 1.231 1.987
NLINK 0.081 ◦ 0.170 	 0.189 	 0.181 	 −0.034
NPART 0.050 −0.524 + −0.495 + −0.248
NUSERS −0.499 	 −0.388 	 −0.379 	 −0.429 ◦
SNACENT 0.278 4.313 ◦ 4.401 ◦ 1.157
REPLY 0.035 + 0.033 + 0.085 ◦
REPLYE −0.808 + −0.707 + −0.918
DLEN −0.187 	 −0.151 	 −0.144 ◦
DLENE −2.013 	 −1.618 	 −0.165
INT 0.264 	 0.226 	 0.344 •
INTE 2.312 	 1.599 	 1.654 •
WA −0.092 + −0.138 +
WAE 1.477 • 0.816
χ2 1292.60 	 1298.99 1347.93 	 1605.97 	 1621.35 	 3942.50 	

Dev. Expl. 12.67% 12.74% 13.22% 15.75% 15.90% 39.15%

χ2 29.74 33.66 125.75 73.82 829.32

Bold entries denote statistically significant coefficients with a p level lower than 0.1
	 p < 0.001, • p < 0.01, ◦ p < 0.05, + p < 0.1

Table 22 Hierarchical analysis of logistic regression models along the four dimensions of social
interaction metrics for Mozilla FIREFOX 3.0

log(Yi) MB M1 M2 M3 M4 M5

CHURN 0.649 	 0.663 	 0.676 	 0.707 	 0.726 	 0.603 	

NSOURCE −0.050 ◦ −0.044 −0.026 0.008 −0.039
NSCOM −0.100 −0.019 0.080 0.112 0.204 ◦
PATCHS 0.697 0.929 0.790 0.838 ◦ 1.632
NLINK 0.078 • 0.139 	 0.178 	 0.169 	 0.098 •
NPART −0.752 	 −0.169 0.031 −0.164
NUSERS 0.214 	 0.286 	 0.300 	 0.198 •
SNACENT 3.082 • 1.646 0.312 1.827
REPLY −0.032 ◦ −0.006 0.000
REPLYE −1.803 	 −1.172 	 −0.608
DLEN 0.011 0.048 ◦ 0.018
DLENE −0.089 0.746 • 0.061
INT −0.295 	 −0.254 	 −0.073
INTE 0.486 • 0.599 • 0.453
WA −0.308 	 −0.146 	

WAE 0.291 0.628
CON1−3 	

Chi−Sq 744.14 	 773.88 	 807.54 	 933.29 	 1007.11 	 1836.43 	

Dev.Expl 14.90% 15.49% 16.17% 18.68% 20.16% 36.76%
Delta Chisq 29.74 33.66 125.75 73.82 829.32

	 p < 0.001, • p < 0.01, ◦ p < 0.05, + p < 0.1

Empir Software Eng (2013) 18:375–431 429

References

Alatis JE (1993) Language, communication and social meaning. Georgetown University Press
Antoniol G, Ayari K, Di Penta M, Khomh F, Guéhéneuc Y-G (2008) Is it a bug or an enhance-

ment?: a text-based approach to classify change requests. In: CASCON ’08: proceedings of the
2008 conference of the center for advanced studies on collaborative research. ACM, pp 304–
318

Anvik J, Hiew L, Murphy GC (2006) Who should fix this bug? In: ICSE ’06: proceedings of the 28th
international conference on software engineering. ACM, pp 361–370

Bacchelli A, D’Ambros M, Lanza M (2010) Are popular classes more defect prone? In: To appear
in FASE 2010: proceedings of the 13th international conference on fundamental approaches to
soft. eng. Springer

Basili VR, Briand LC, Melo WL (1996) A validation of object-oriented design metrics as quality
indicators. IEEE Trans Softw Eng 22(10):751–761

Bettenburg N, Just S, Schröter A, Weiss C, Premraj R, Zimmermann T (2008) What makes a good
bug report? In: SIGSOFT ’08/FSE-16: proceedings of the 2008 ACM SIGSOFT symposium on
foundations of software engineering. ACM, pp 308–318

Bettenburg N, Premraj R, Zimmermann T, Kim S (2008) Extracting structural information from
bug reports. In: MSR ’08: proceedings of the 2008 international working conference on mining
software repositories. ACM, pp 27–30

Bird C, Pattison D, D’Souza R, Filkov V, Devanbu P (2008) Latent social structure in open source
projects. In: ESEC/FSE ’08: proceedings of the 2008 ACM SIGSOFT symposium on foundations
of software engineering. ACM, pp 24–35

Bird C, Bachmann A, Aune E, Duffy J, Bernstein A, Filkov V, Devanbu P (2009) Fair and balanced?:
bias in bug-fix datasets. In: ESEC/FSE ’09: proceedings of the 2009 ACM SIGSOFT symposium
on foundations of software engineering. ACM, pp 121–130

Bland MJ, Altman DG (1996) Transformations, means and confidence intervals. Br Med J
312(7038):1079

Cataldo M, Mockus A, Roberts JA, Herbsleb JD (2009) Software dependencies, work dependencies,
and their impact on failures. IEEE Trans Softw Eng 35(6):864–878

Cohen J (2003) Applied multiple regression/correlation analysis for the behavioral sciences, vol 1.
Routledge

Čubranić D, Murphy GC (2003) Hipikat: recommending pertinent software development artifacts.
In: ICSE ’03: proceedings of the 25th international conference on software engineering. IEEE
Computer Society, pp 408–418

D’Este C (2004) Sharing meaning with machines. In: Proceedings of the fourth international work-
shop on epigenetic robotics. Lund University Cognitive Studies, pp 111–114

Edwards AWF (1963) The measure of association in a 2 by 2 table. J R Stat Soc A 126(1):109–114
Fay MP, Proschan MA (2010) Wilcoxon-Mann-Whitney or t-test? On assumptions for hypothesis

tests and multiple interpretations of decision rules. In: Statistics surveys, vol 4, pp 1–39
Fischer M, Pinzger M, Gall H (2003) Analyzing and relating bug report data for feature tracking. In:

WCRE ’03: proceedings of the 10th working conference on reverse engineering. IEEE Computer
Society, p 90

Friendly M (2002) Corrgrams: exploratory displays for correlation matrices. Am Stat 56(1):316–324
Guo PJ, Zimmermann T, Nagappan N, Murphy B (2010) Characterizing and predicting which bugs

get fixed: an empirical study of microsoft windows. In: To appear in proceedings of the 32th
international conference on software engineering

Guo PJ, Zimmermann T, Nagappan N, Murphy B (2011) Not my bug and other reasons for software
bug report reassignments. In: Proceedings of the ACM conference on computer supported
cooperative work (CSCW 2011). ACM

Hassan AE (2009) Predicting faults using the complexity of code changes. In: ICSE ’09: proceedings
of the 31st international conference on software engineering. IEEE Computer Society, pp 78–88

Jeong G, Kim S, Zimmermann Th (2009) Improving bug triage with bug tossing graphs. In: ES-
EC/FSE ’09: proceedings of the 2009 ACM SIGSOFT symposium on foundations of software
engineering. ACM, pp 111–120

Kutner MH, Nachtsheim CJ, Neter J (2004) Applied linear regression models, 4th international edn.
McGraw-Hill/Irwin

McCabe TJ (1976) A complexity measure. In: ICSE ’76: proceedings of the 2nd international confer-
ence on software engineering. IEEE Computer Society Press, p 407

430 Empir Software Eng (2013) 18:375–431

Meneely A, Williams L, Snipes W, Osborne J (2008) Predicting failures with developer networks
and social network analysis. In: SIGSOFT ’08/FSE-16: proceedings of the 2008 ACM SIGSOFT
symposium on foundations of software engineering. ACM, pp 13–23

Mertsalov K, Magdon-Ismail M, Goldberg M (2009) Models of communication dynamics for simula-
tion of information diffusion. In: Proceedings of the 2009 international conference on advances in
social network analysis and mining (ASONAM ’09). IEEE Computer Society Press, pp 194–199

Mockus A, Zhang P, Li PL (2005) Predictors of customer perceived software quality. In: ICSE ’05:
proceedings of the 27th international conference on software engineering. ACM, pp 225–233

Mockus A, Nagappan N, Dinh-Trong T (2009) Test coverage and post-verification defects: a multiple
case study. In: Proceedings of the 2009 3rd international symposium on empirical software
engineering and measurement (ESEM ’09). IEEE Computer Society, pp 291–301

Munson JC, Elbaum SG (1998) Code churn: a measure for estimating the impact of code change.
In: ICSM ’98: proceedings of the international conference on software maintenance. IEEE
Computer Society, p 24

Nagappan N, Ball T (2005) Use of relative code churn measures to predict system defect density.
In: ICSE ’05: proceedings of the 27th international conference on software engineering. ACM,
pp 284–292

Nagappan N, Ball T (2007) Using software dependencies and churn metrics to predict field failures:
an empirical case study. In: ESEM ’07: proceedings of the first international symposium on
empirical software engineering and measurement. IEEE Computer Society, pp 364–373

Ohlsson N, Alberg H (1996) Predicting fault-prone software modules in telephone switches. IEEE
Trans Softw Eng 22(12):886–894

Purao S, Vaishnavi V (2003) Product metrics for object-oriented systems. ACM Comput Surv
35(2):191–221

Pinzger M, Nagappan N, Murphy B (2008) Can developer-module networks predict failures? In:
SIGSOFT ’08/FSE-16: proceedings of the 2008 ACM SIGSOFT symposium on foundations of
software engineering. ACM, pp 2–12

Shannon CE (2001) A mathematical theory of communication. SIGMOBILE Mob Comput Com-
mun Rev 5(1):3–55

Schröter A, Zimmermann T, Zeller A (2006) Predicting component failures at design time. In:
ISESE ’06: proceedings of the 2006 ACM/IEEE international symposium on empirical software
engineering. ACM, pp 18–27

Schroter A, Bettenburg N, Premraj R (2010) Do stack traces help developers fix bugs? In: Pro-
ceedings of 7th IEEE working conference on mining software repositories (MSR’10). IEEE
Computer Society, pp 118–121

Shihab E, Ihara A, Kamei Y, Ibrahim WM, Ohira M, Adams B, Hassan AE, Matsumoto K (2010a)
Predicting re-opened bugs: a case study on the eclipse project. In: Proceedings of the 17th
working conference on reverse engineering (WCRE 2010). IEEE Computer Society, pp 13–16

Shihab E, Jiang ZM, Ibrahim WM, Adams B, Hassan AE (2010b) Understanding the impact of code
and process metrics on post-release defects: a case study on the eclipse project. In: Proceedings
of the 4th IEEE international symposium on empirical software engineering and measurement
(ESEM 2010). ACM, pp 4:1–4:10

Śliwerski J, Zimmermann T, Zeller A (2005) When do changes induce fixes? In: MSR ’05:
proceedings of the 2005 international workshop on mining software repositories. ACM, pp 1–5

Steel RGD, Torrie JH (1960) Principles and procedures of statistics. McGraw-Hill, pp 187–287
Wasserman S, Faust K (1994) Social network analysis: methods and applications (structural analysis

in the social sciences), 1st edn. Cambridge University Press
Wolf T, Schröter A, Damian D, Nguyen T (2009) Predicting build failures using social network

analysis on developer communication. In: ICSE ’09: proceedings of the 31st international
conference on software engineering. IEEE Computer Society, pp 1–11

Yin RK (1994) Case study research: design and methods. Sage, Thousand Oaks, California
Zeller A (2009) Why programs fail, 2nd edn: a guide to systematic debugging. Morgan Kaufmann
Zimmermann T, Nagappan N (2008) Predicting defects using network analysis on dependency

graphs. In: ICSE ’08: proceedings of the 30th international conference on software engineering.
ACM, pp 531–540

Zimmermann T, Nagappan N, Gall H, Giger E, Murphy B (2009) Cross-project defect prediction:
a large scale experiment on data vs. domain vs. process. In: ESEC/FSE ’09: proceedings of the
2009 ACM SIGSOFT symposium on foundations of software engineering. ACM, pp 91–100

Zimmermann T, Premraj R, Zeller A (2007) Predicting defects for eclipse. In: Proceedings of the
third international workshop on predictor models in software engineering, May 2007

Empir Software Eng (2013) 18:375–431 431

Nicolas Bettenburg is a Ph.D. Candidate under the supervision of Ahmed E. Hassan at Queen’s
University. He received the B.Sc. and M.Sc. degrees in computer science from Saarland University
in 2006 and 2008, respectively.

His research interests focus around mining unstructured information from software repositories
with a focus on understanding the relationship between developer collaboration and software quality.
His professional activities include the co-organization the 2010 Workshop on Mining Unstructured
Data (MUD), and carrying out peer-reviews for a variety of journals in the research area of Empirical
Software Engineering. He is a member of the IEEE and ACM.

Ahmed E. Hassan is the NSERC/RIM Industrial Research Chair in Software Engineering for Ultra
Large Scale systems at Queen’s University. Dr. Hassan spearheaded the organization and creation
of the Mining Software Repositories (MSR) conference and its research community. He co-edited
special issues of the IEEE Transactions on Software Engineering and the Journal of Empirical
Software Engineering on the MSR topic.

Early tools and techniques developed by Dr. Hassan’s team are already integrated into products
used by millions of users worldwide. Dr. Hassan industrial experience includes helping architect the
Blackberry wireless platform at RIM, and working for IBM Research at the Almaden Research Lab
and the Computer Research Lab at Nortel Networks. Dr. Hassan is the named inventor of patents
at several jurisdictions around the world including the United States, Europe, India, Canada, and
Japan.

	Studying the impact of social interactions on software quality
	Abstract
	Introduction
	Social Interaction Metrics
	Dimension One: Discussion Content
	Source Code Examples (Amount, Complexity)
	Patches (Amount, Filespread)
	Stack Traces (Amount, Stacksize)
	Links

	Dimension Two: Social Structures
	Discussion Participants
	Role
	Experience
	Centrality

	Dimension Three: Communication Dynamics
	Number of Messages
	Length of Messages
	Reply Time
	Interestingness

	Dimension Four: Workflow

	Study Design
	Case Study One: Eclipse IDE
	Data Collection
	Preliminary Analysis of Social Interaction Measures for ECLIPSE 3.0
	Hierarchical Analysis
	Additional Versions of ECLIPSE

	Case Study Two: Mozilla Firefox
	Data Collection
	Preliminary Analysis of Social Interaction Measures
	Hierarchical Analysis
	Additional Versions of Firefox

	Discussion of the Results of Both Case Studies
	Discussion of Entropy Measures
	Discussion of Entropy in Discussion Length (DLENE)
	Discussion of Entropy in Reply Time (REPLYE)
	Discussion of Entropy in Interestingness (INTE)
	Discussion of Entropy in Workflow Activity (WAE)

	Enhancing Traditional Models with Social Information
	Related Work
	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity
	Reliability

	Conclusions and Future Possibilities
	Appendix A: Repeatability of our Work
	Case Study One: ECLIPSE
	Case Study Two: Firefox
	Modelling the Relative Effect of Regression Variables

	Appendix B: Summary of Hierarchical Models with -coefficients
	References

